Effect of Cold Plasma Treatment on Surface Roughness and Bonding Strength of Polymeric Substrates

Article Preview

Abstract:

For an effective application of polymers, it is essential to have good adhesion behaviour to ensure good mechanical properties and durable components. Unfortunately, in general terms, polymers are characterized by high chemical inertness, which leads to very low surface energy values and, consequently, poor adhesive properties; this is particularly true for polyolefins. In this study, the effects of low pressure plasma treatment on surface roughness of polyethylene and polypropylene samples and on shear properties of adhesive bonded joints based on these substrates have been investigated. In particular, the optimization of three plasma process parameters, exposure time, voltage and working gas, were studied performing roughness measurement, contact angle evaluation and lap-shear tests. The experimental results show that the optimized plasma process may remarkably change the surface morphology, increasing wettability properties of the surfaces and shear strength of the bonded joints. These good properties remain almost unchanged even after some days of storage in the laboratory.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

1484-1493

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Sadowski, M. Kneć, P. Golewski, Experimental investigations and numerical modelling of steel adhesive joints reinforced by rivets, Int. J. Adhes. Adhes. 30(2010) 338–346.

DOI: 10.1016/j.ijadhadh.2009.11.004

Google Scholar

[2] F. Hayat, Comparing Properties of Adhesive Bonding, Resistance Spot Welding and Adhesive Weld Bonding of Coated and Uncoated DP 600 Steel, Int. J. Iron Steel Research. 18(9) (2011) 70-78.

DOI: 10.1016/s1006-706x(12)60037-5

Google Scholar

[3] E.M. Petrie, Handbook of Adhesives and Sealants. McGraw-Hill, USA, (2000).

Google Scholar

[4] A. Baldan, Review Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment, J. mater. science 39 (2004) 1– 49.

DOI: 10.1023/b:jmsc.0000007726.58758.e4

Google Scholar

[5] R.F. Wegman, J. Van Twisk Surface preparation techniques for adhesive bonding. Elsevier, UK, (2013).

Google Scholar

[6] ASTM D2093 – 03 (2003) Standard Practice for Preparation of Surfaces of Plastics Prior to Adhesive Bonding.

Google Scholar

[7] N. Encinas, J. Abenojar, M.A. Martínez, Development of improved polypropylene adhesive bonding by abrasion and atmospheric plasma surface modifications, Int. J. Adhes. Adhes. 33 (2012) 1–6.

DOI: 10.1016/j.ijadhadh.2011.10.002

Google Scholar

[8] H.M.S. Iqbal, S. Bhowmik, R. Benedictus, Surface modification of high performance polymers by atmospheric pressure plasma and failure mechanism of adhesive bonded joints. Int. J. Adhes. Adhes. 30(2010) 418–424.

DOI: 10.1016/j.ijadhadh.2010.02.007

Google Scholar

[9] U. Schulz, P. Munzert, N. Kaiser, Surface modification of PMMA by DC glow discharge and microwave plasma treatment for the improvement of coating adhesion, Surf. Coat. Technol. 142-144 (2001) 507-511.

DOI: 10.1016/s0257-8972(01)01202-6

Google Scholar

[10] Z. Zhenga, L. Rena, W. Fenga, Z. Zhaia, Y. Wanga, Surface characterization of polyethylene terephthalate films treated by ammonia low-temperature plasma, Appl. Surf. Sci. 258 (2012) 7207– 7212.

DOI: 10.1016/j.apsusc.2012.04.038

Google Scholar

[11] M.O.H. Cioffi, H.J.C. Voorwald, L.R.C. Hein, L. Ambrosio, Effect of cold plasma treatment on mechanical properties of PET/PMMA composites, Composites A 36(2005) 615–623.

DOI: 10.1016/j.compositesa.2004.08.006

Google Scholar

[12] K.M. Baumgärtner, J. Schneider, A. Schulz, J. Feichtinger, M. Walker, Short-time plasma pre-treatment of polytetrafluoroethylene for improved adhesion, Surf. Coat. Technol. (2001) 142-144 501-506.

DOI: 10.1016/s0257-8972(01)01209-9

Google Scholar

[13] L. Carrino, G. Moroni, W. Polini, Cold plasma treatment of polypropylene surface: a study on wettability and adhesion, J. Mater. Process. Technol. 121(2002) 373-382.

DOI: 10.1016/s0924-0136(01)01221-3

Google Scholar

[14] Jong-kyu Park, Won-tae Ju, Kwang-hyun Paek, Yong-hwan Kim, Yoon-ho Choi, Ji-hun Kim, Yong-seok Hwang, Pre-treatments of polymers by atmospheric pressure ejected plasma for adhesion improvement, Surf. Coat. Technol. 174-175(2003) 547-552.

DOI: 10.1016/s0257-8972(03)00689-3

Google Scholar

[15] J.H. Ku, I.H. Jung, K.Y. Rhee, S.J. Park, Atmospheric pressure plasma treatment of polypropylene to improve the bonding strength of polypropylene/aluminium composites, Composites B 45 (2013) 1282-1287.

DOI: 10.1016/j.compositesb.2012.06.016

Google Scholar

[16] M. Lehocky, H. Drnovska, B. Lapčíková, A.M. Barros-Timmons, T. Trindade, M. Zembala, Jr. L. Lapčík, Plasma surface modification of polyethylene, Colloids Surf. A 222 (2003) 125-131.

DOI: 10.1016/s0927-7757(03)00242-5

Google Scholar

[17] L. Sorrentino, L. Carrino, Influence of process parameters of oxygen cold plasma treatment on wettability ageing time of 2024 aluminum alloy, Int. J. Adhes. Adhes. 29 (2009) 136-143.

DOI: 10.1016/j.ijadhadh.2008.01.009

Google Scholar

[18] C.J. Lee, S.K. Lee, D.C. Ko, D.J. Kim, B.M. Kim, Evaluation of surface and bonding properties of cold rolled steel sheet pretreated by Ar/O2 atmospheric pressure plasma at room temperature, J. Mater. Process. Technol. 209 (2009) 4769-4775.

DOI: 10.1016/j.jmatprotec.2008.11.043

Google Scholar

[19] S. Tang, O.J. Kwon, N. Lu, H.S. Choi, Surface characteristics of AISI 304L stainless steel after an atmospheric pressure plasma treatment, Surf. Coat. Technol. 195 (2005) 298-306.

DOI: 10.1016/j.surfcoat.2004.07.071

Google Scholar

[20] D.M. Choi, C.K. Park, K. Cho, C.E. Park Adhesion improvement by plasma treatment of polyethylene, Polymer 38 – 25 (1997) 6243-6249.

DOI: 10.1016/s0032-3861(97)00175-4

Google Scholar

[21] W. Petasch, E. Räuchle, M. Walker, P. Eisner Improvement of the adhesion of low-energy polymers by a short-time plasma treatment. Surf Coat Technol 74-75(1995) 682-688.

DOI: 10.1016/0257-8972(94)08209-x

Google Scholar

[22] V. Fombuena, J. Balart, T. Boronat, L. Sánchez-Nácher, D. Garcia-Sanoguera, Improving mechanical performance of thermoplastic adhesion joints by atmospheric plasma, Mater. Des. 47 (2013) 49-56.

DOI: 10.1016/j.matdes.2012.11.031

Google Scholar

[23] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: A review, Spectrochimica Acta B 61 (2006) 2 – 30.

DOI: 10.1016/j.sab.2005.10.003

Google Scholar

[24] C. Mühlhan, S.T. Weidner, J. Friedrich, H. Nowack, Improvement of bonding properties of polypropylene by low pressure plasma treatment, Surf. Coat. Technol. 116-119 (1999) 783-787.

DOI: 10.1016/s0257-8972(99)00203-0

Google Scholar

[25] Loctite (2013), Technical Data Sheet Loctite® 401TM.

Google Scholar

[26] ASTM D3163 – 01 (2008). Standard Test Method for Determining Strength of Adhesively Bonded Rigid Plastic Lap-Shear Joints in Shear by Tension Loading.

DOI: 10.1520/d3163-96

Google Scholar