[1]
T. Sadowski, M. Kneć, P. Golewski, Experimental investigations and numerical modelling of steel adhesive joints reinforced by rivets, Int. J. Adhes. Adhes. 30(2010) 338–346.
DOI: 10.1016/j.ijadhadh.2009.11.004
Google Scholar
[2]
F. Hayat, Comparing Properties of Adhesive Bonding, Resistance Spot Welding and Adhesive Weld Bonding of Coated and Uncoated DP 600 Steel, Int. J. Iron Steel Research. 18(9) (2011) 70-78.
DOI: 10.1016/s1006-706x(12)60037-5
Google Scholar
[3]
E.M. Petrie, Handbook of Adhesives and Sealants. McGraw-Hill, USA, (2000).
Google Scholar
[4]
A. Baldan, Review Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment, J. mater. science 39 (2004) 1– 49.
DOI: 10.1023/b:jmsc.0000007726.58758.e4
Google Scholar
[5]
R.F. Wegman, J. Van Twisk Surface preparation techniques for adhesive bonding. Elsevier, UK, (2013).
Google Scholar
[6]
ASTM D2093 – 03 (2003) Standard Practice for Preparation of Surfaces of Plastics Prior to Adhesive Bonding.
Google Scholar
[7]
N. Encinas, J. Abenojar, M.A. Martínez, Development of improved polypropylene adhesive bonding by abrasion and atmospheric plasma surface modifications, Int. J. Adhes. Adhes. 33 (2012) 1–6.
DOI: 10.1016/j.ijadhadh.2011.10.002
Google Scholar
[8]
H.M.S. Iqbal, S. Bhowmik, R. Benedictus, Surface modification of high performance polymers by atmospheric pressure plasma and failure mechanism of adhesive bonded joints. Int. J. Adhes. Adhes. 30(2010) 418–424.
DOI: 10.1016/j.ijadhadh.2010.02.007
Google Scholar
[9]
U. Schulz, P. Munzert, N. Kaiser, Surface modification of PMMA by DC glow discharge and microwave plasma treatment for the improvement of coating adhesion, Surf. Coat. Technol. 142-144 (2001) 507-511.
DOI: 10.1016/s0257-8972(01)01202-6
Google Scholar
[10]
Z. Zhenga, L. Rena, W. Fenga, Z. Zhaia, Y. Wanga, Surface characterization of polyethylene terephthalate films treated by ammonia low-temperature plasma, Appl. Surf. Sci. 258 (2012) 7207– 7212.
DOI: 10.1016/j.apsusc.2012.04.038
Google Scholar
[11]
M.O.H. Cioffi, H.J.C. Voorwald, L.R.C. Hein, L. Ambrosio, Effect of cold plasma treatment on mechanical properties of PET/PMMA composites, Composites A 36(2005) 615–623.
DOI: 10.1016/j.compositesa.2004.08.006
Google Scholar
[12]
K.M. Baumgärtner, J. Schneider, A. Schulz, J. Feichtinger, M. Walker, Short-time plasma pre-treatment of polytetrafluoroethylene for improved adhesion, Surf. Coat. Technol. (2001) 142-144 501-506.
DOI: 10.1016/s0257-8972(01)01209-9
Google Scholar
[13]
L. Carrino, G. Moroni, W. Polini, Cold plasma treatment of polypropylene surface: a study on wettability and adhesion, J. Mater. Process. Technol. 121(2002) 373-382.
DOI: 10.1016/s0924-0136(01)01221-3
Google Scholar
[14]
Jong-kyu Park, Won-tae Ju, Kwang-hyun Paek, Yong-hwan Kim, Yoon-ho Choi, Ji-hun Kim, Yong-seok Hwang, Pre-treatments of polymers by atmospheric pressure ejected plasma for adhesion improvement, Surf. Coat. Technol. 174-175(2003) 547-552.
DOI: 10.1016/s0257-8972(03)00689-3
Google Scholar
[15]
J.H. Ku, I.H. Jung, K.Y. Rhee, S.J. Park, Atmospheric pressure plasma treatment of polypropylene to improve the bonding strength of polypropylene/aluminium composites, Composites B 45 (2013) 1282-1287.
DOI: 10.1016/j.compositesb.2012.06.016
Google Scholar
[16]
M. Lehocky, H. Drnovska, B. Lapčíková, A.M. Barros-Timmons, T. Trindade, M. Zembala, Jr. L. Lapčík, Plasma surface modification of polyethylene, Colloids Surf. A 222 (2003) 125-131.
DOI: 10.1016/s0927-7757(03)00242-5
Google Scholar
[17]
L. Sorrentino, L. Carrino, Influence of process parameters of oxygen cold plasma treatment on wettability ageing time of 2024 aluminum alloy, Int. J. Adhes. Adhes. 29 (2009) 136-143.
DOI: 10.1016/j.ijadhadh.2008.01.009
Google Scholar
[18]
C.J. Lee, S.K. Lee, D.C. Ko, D.J. Kim, B.M. Kim, Evaluation of surface and bonding properties of cold rolled steel sheet pretreated by Ar/O2 atmospheric pressure plasma at room temperature, J. Mater. Process. Technol. 209 (2009) 4769-4775.
DOI: 10.1016/j.jmatprotec.2008.11.043
Google Scholar
[19]
S. Tang, O.J. Kwon, N. Lu, H.S. Choi, Surface characteristics of AISI 304L stainless steel after an atmospheric pressure plasma treatment, Surf. Coat. Technol. 195 (2005) 298-306.
DOI: 10.1016/j.surfcoat.2004.07.071
Google Scholar
[20]
D.M. Choi, C.K. Park, K. Cho, C.E. Park Adhesion improvement by plasma treatment of polyethylene, Polymer 38 – 25 (1997) 6243-6249.
DOI: 10.1016/s0032-3861(97)00175-4
Google Scholar
[21]
W. Petasch, E. Räuchle, M. Walker, P. Eisner Improvement of the adhesion of low-energy polymers by a short-time plasma treatment. Surf Coat Technol 74-75(1995) 682-688.
DOI: 10.1016/0257-8972(94)08209-x
Google Scholar
[22]
V. Fombuena, J. Balart, T. Boronat, L. Sánchez-Nácher, D. Garcia-Sanoguera, Improving mechanical performance of thermoplastic adhesion joints by atmospheric plasma, Mater. Des. 47 (2013) 49-56.
DOI: 10.1016/j.matdes.2012.11.031
Google Scholar
[23]
C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: A review, Spectrochimica Acta B 61 (2006) 2 – 30.
DOI: 10.1016/j.sab.2005.10.003
Google Scholar
[24]
C. Mühlhan, S.T. Weidner, J. Friedrich, H. Nowack, Improvement of bonding properties of polypropylene by low pressure plasma treatment, Surf. Coat. Technol. 116-119 (1999) 783-787.
DOI: 10.1016/s0257-8972(99)00203-0
Google Scholar
[25]
Loctite (2013), Technical Data Sheet Loctite® 401TM.
Google Scholar
[26]
ASTM D3163 – 01 (2008). Standard Test Method for Determining Strength of Adhesively Bonded Rigid Plastic Lap-Shear Joints in Shear by Tension Loading.
DOI: 10.1520/d3163-96
Google Scholar