[1]
A.L. Pilchak, W. Tang, H. Sahiner, A.P. Reynolds and J.C. Williams, Microstructure Evolution during friction stir welding of mill-annealed Ti-6Al-4V, Metallurgical and materials transaction A, 42A (2011) 745-762.
DOI: 10.1007/s11661-010-0439-4
Google Scholar
[2]
M.P. Miles, T.W. Nelson1, R. Steel, E. Olsen and M. Gallagher, Effect of friction stir welding conditions on properties and microstructures of high strength automotive steel, Science and technology of welding and joining, 14 (2009), 228-232.
DOI: 10.1179/136217108x388633
Google Scholar
[3]
J. Perrett, J. Martin, J. Peterson, R. Steel, S. Packer, Friction stir welding of industrial steels, TWI, (2011).
DOI: 10.1002/9781118062302.ch9
Google Scholar
[4]
Yu Zhang, Yutaka S. Sato, Hiroyuki Kokawa, Seung Hwan C. Park, Satoshi Hirano, Stir zone microstructure of commercial purity titanium friction stir welded using pcBN tool, Materials science and engineering A, 488 (2008) 25-30.
DOI: 10.1016/j.msea.2007.10.062
Google Scholar
[5]
C. Ridges, Tool life of various tool materials when friction spot welding DP980 steel, Birgham Young University, master thesis, (2011).
Google Scholar
[6]
C.D. Sorensen and T.W. Nelson, Friction Stir Welding of Ferrous and Nickel Alloys, ASM International, chapter 6 (2007).
Google Scholar
[7]
H. Sumiya, S. Uesaka, S. Satoh, Mechanical properties of high purity polycrystalline cBN synthesized by direct conversion sintering method, Journal of materials science, 35 (2000) 1181-1186).
Google Scholar
[8]
D.B. Marshall, Reducing fracture tendencies in pcBN FSW tools, Teledyne Scientific Company, Semi-annual report, 1 (2009).
DOI: 10.21236/ada504865
Google Scholar
[9]
G.J. Perrett, Evaluation of advanced tool material technology for the FSW of 6mm AISI 304L stainless steel, TWI, (2010).
Google Scholar
[10]
R. Rai, A. De, H.K.D. H Bhadeshia, T. DebRoy, Review: friction stir welding tools, Science and Technology of Welding and joining, 16 (2011) 325-342.
DOI: 10.1179/1362171811y.0000000023
Google Scholar
[11]
P. Edwards, M. Ramulu, Identification of process parameters for friction stir welding Ti-6Al-4V, Journal of engineering materials and technology, 132 (2010).
DOI: 10.1115/1.4001302
Google Scholar
[12]
K. Reshad Seighalani, M.K. Besharati Givi, A.M. Nasiri and P. Bahemmat, Investigations on the effects of the tool material, geometry and tilt angle on friction stir welding of pure titanium, Journal of materials engineering and performance, 19 (2010).
DOI: 10.1007/s11665-009-9582-8
Google Scholar
[13]
L. Zhou, H.J. Liu, Q.W. Liu, Effect of rotation speed on microstructure and mechanical properties of Ti-6Al-4V friction stir welded joints, Materials and design, 31 (2010) 2631-2636.
DOI: 10.1016/j.matdes.2009.12.014
Google Scholar
[14]
L. Zhou, H.J. Liu, P. Liu and Q.W. Liu, The stir zone microstructure and its formation mechanism in Ti-6Al-4V friction stir welds, Scripta materialia, 61 (2009) 596-599.
DOI: 10.1016/j.scriptamat.2009.05.029
Google Scholar
[15]
P. Edwards and M. Ramulu, Investigation of microstructure, surface and subsurface characteristics in titanium alloy friction stir welds of varied thickness, Science and technology of welding and joining, 14 (2009), 476-483.
DOI: 10.1179/136217109x425838
Google Scholar
[16]
P. Edwards and M. Ramulu Effect of process conditions on superplastic forming behaviour in Ti-6Al-4V friction stir welds, Science and technology of welding and joining, 14 (2009) 669-680.
DOI: 10.1179/136217109x12464549883330
Google Scholar
[17]
Y.C. Chen, K. Nakata Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys, Materials and design, 30 (2009), 469-474.
DOI: 10.1016/j.matdes.2008.06.008
Google Scholar
[18]
Y. Zhang, Y.S. Sato, H. Kokawa, S. Hwan, C. Park, S. Hirano Microstructural characteristics and mechanical properties of Ti-6Al-4V friction stir welds, Materials and design, 31 (2010) 1650-1655.
DOI: 10.1016/j.msea.2007.08.051
Google Scholar
[19]
S. Pasta, A.P. Reynolds, Residual stress effects on fatigue crack growth in a Ti-6Al-4V friction stir weld, Fatigue and fracture of engineering materials and structures, 31(2008) 569-580.
DOI: 10.1111/j.1460-2695.2008.01258.x
Google Scholar