Thermoforming Simulation of Multilayer Composites with Continuous Fibre and Thermoplastic Matrix

Article Preview

Abstract:

CFRTP prepreg laminates thermoforming (Continuous Fibre Reinforcements and Thermoplastic Resin) is a fast composite manufacturing process. Furthermore the thermoplastic matrix is favourable to recycling. The development of a thermoforming process is complex and expensive to achieve by trial/error. A simulation approach for thermoforming of multilayer thermoplastic is presented. Each prepreg layer is modelled by semi-discrete shell elements. These elements consider the tension, in-plane shear and bending behaviour of the ply at different temperatures around the fusion point. The contact/friction during the forming process is taken into account using forward increment Lagrange multipliers. A lubricated friction model is implemented between the layers and for ply/tool friction. Thermal and forming simulations are presented and compared to experimental results. The computed shear angles after forming and wrinkles are in good agreement with the thermoforming experiment.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

368-374

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Advani SG: Flow and rheology in polymeric composites manufacturing. Amsterdam: Elsevier; (1994).

Google Scholar

[2] Rudd CD, Long AC. Liquid Molding Technologies. Cambridge: Woodhead Pub. Lim.; (1997).

Google Scholar

[3] De Luca P, Pickett AK. Numerical and experimental investigation of some press forming parameters of two fibre reinforced thermoplastics: APC2-AS4 and PEI-CETEX. Compos Part A 1998; 29: 101-10.

DOI: 10.1016/s1359-835x(97)00060-2

Google Scholar

[4] Hsiao SW, Kikuchi N. Numerical analysis and optimal design of composite thermoforming process. Comput Method Appl Mech 1999; 177: 1-34.

Google Scholar

[5] Pickett AK, Cunningham JE, De Luca P, et al. Numerical techniques for the pre-heating and forming simulation of continuous fibre reinforced thermoplastics. In: SAMPE european conference and exhibition, Basel. May 25-30, (1996).

Google Scholar

[6] Willems A, Lomov SV, Verpoest I, Vandepitte D, Harrison P, Yu WR. Forming simulation of a thermoplastic commingled woven textile on a double dome. Int J Mater Form 2008; Suppl 1: 965-68.

DOI: 10.1007/s12289-008-0218-6

Google Scholar

[7] ten Thije RHW, Akkerman R. A multi-layer triangular membrane finite element for the forming simulation of laminated composites. Compos Part A 2009; 40: 739-53.

DOI: 10.1016/j.compositesa.2009.03.004

Google Scholar

[8] Hamila N, Boisse P, Sabourin F, Brunet M. A semi-discrete shell finite element for textile composite reinforcement forming simulation. Int J Numer Methods Eng 2009; 79: 1443-66.

DOI: 10.1002/nme.2625

Google Scholar

[9] Boisse P, Hamila N, Vidal-Sallé E, Dumont F. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses. Compos Sci Technol 2011; 71(5): 683-92.

DOI: 10.1016/j.compscitech.2011.01.011

Google Scholar

[10] Allaoui S, Boisse P, Chatel S, Hamila N, Hivet G, Soulat D, Vidal-Salle E. Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape. Compos Part A 2009; 40: 739-53.

DOI: 10.1016/j.compositesa.2011.02.001

Google Scholar

[11] Kawabata S, Niwa M, Kawai H. The Finite Deformation Theory of Plain Weave Fabrics Part I: The Biaxial Deformation Theory. J Text Inst 1973; 64(1): 21-46.

DOI: 10.1080/00405007308630416

Google Scholar

[12] Buet-Gautier K, Boisse P. Experimental analysis and modeling of biaxial mechanical behavior of woven composite reinforcements. Exp Mech 2001; 41(3): 260-69.

DOI: 10.1007/bf02323143

Google Scholar

[13] Carvelli V, Corazza C, Poggi C. Mechanical modelling of monofilament technical textiles. Comput Mater Sci 2008; 42: 679-91.

DOI: 10.1016/j.commatsci.2007.10.003

Google Scholar

[14] Willems A, Lomov SV, Verpoest I, Vandepitte D. Optical strain fields in shear and tensile testing of textile reinforcements. Compos Sci Technol 2008; 68: 807-19.

DOI: 10.1016/j.compscitech.2007.08.018

Google Scholar

[15] Prodromou AG, Chen J. On the relationship between shear angle and wrinkling of textile composite performs. Compos Part A 1997; 28A: 491-503.

DOI: 10.1016/s1359-835x(96)00150-9

Google Scholar

[16] Rozant O, Bourban PE, Manson JAE. Drapability of dry textile fabrics for stampable thermoplastic performs. Compos Part A 2000; 31: 1167-77.

DOI: 10.1016/s1359-835x(00)00100-7

Google Scholar

[17] Potter K. Bias extension measurements on cross-plied unidirectional prepreg. Compos Part A 2002; 33: 63-73.

DOI: 10.1016/s1359-835x(01)00057-4

Google Scholar

[18] Lebrun G, Bureau MN, Denault J. Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics. Compos Struct 2003; 61: 341-52.

DOI: 10.1016/s0263-8223(03)00057-6

Google Scholar

[19] Sharma SB, Sutcliffe MPF, Chang SH. Characterisation of material properties for draping of dry woven composite material. Compos Part A 2003; 34: 1167-75.

DOI: 10.1016/j.compositesa.2003.09.001

Google Scholar

[20] Zhu B, Yu TX, Teng J, Tao XM. Theoretical Modeling of Large Shear Deformation and Wrinkling of Plain Woven Composite. J Compos Mater 2009; 43: 125-38.

DOI: 10.1177/0021998308098237

Google Scholar

[21] Peng, XQ, Cao J, Chen J, Xue P, Lussier DS, Liu L. Experimental and numerical analysis on normalization of picture frame tests for composite materials. Compos Sci Technol 2004; 64: 11-21.

DOI: 10.1016/s0266-3538(03)00202-1

Google Scholar

[22] Harrison P, Clifford MJ, Long AC. Shear characterisation of viscous woven textile composites: a comparison between picture frame and bias extension experiments. Compos Sci Technol 2004; 64: 1453-65.

DOI: 10.1016/j.compscitech.2003.10.015

Google Scholar

[23] Potluri P, Perez Ciurezu DA, Ramgulam RB. Measurement of meso-scale shear deformations for modelling textile composites. Compos Part A 2006; 37: 303-14.

DOI: 10.1016/j.compositesa.2005.03.032

Google Scholar

[24] Lomov SV, Willems A, Verpoest I, Zhu Y, Barburski M, Stoilova Tz. Picture frame test of woven composite reinforcements with a full-field strain registration. Text Res J 2006; 76 (3): 243-52.

DOI: 10.1177/0040517506061032

Google Scholar

[25] Launay J, Hivet G, Duong AV, Boisse P. Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos Sci Tech 2008; 68: 506-15.

DOI: 10.1016/j.compscitech.2007.06.021

Google Scholar

[26] Lomov S, Boisse P, Deluycker E, Morestin F, Vanclooster K, Vandepitte D, Verpoest I, Willems A. Full field strain measurements in textile deformability studies. Compos Part A 2008; 39: 1232-44.

DOI: 10.1016/j.compositesa.2007.09.014

Google Scholar

[27] Cao J, Akkerman R, Boisse P, Chen J, et al. Characterization of Mechanical Behavior of Woven Fabrics: Experimental Methods and Benchmark Results. Compos Part A 2008; 39: 1037-53.

Google Scholar

[28] Wang P, Hamila N, Pineau P, Boisse P. Thermo-mechanical analysis of thermoplastic composite prepregs using bias-extension test. J Thermo Compos Mate, DOI: 10. 1177/0892705712454289, (2012).

DOI: 10.1177/0892705712454289

Google Scholar

[29] Kawabata S. The Standardization and Analysis of Hand Evaluation. Osaka: The Textile Machinery Society of Japan; (1986).

Google Scholar

[30] Lahey TJ, Heppler GR. Mechanical Modeling of Fabrics in Bending. ASME J Appl Mech 2004; 71: 32-40.

Google Scholar