[1]
S.V. Lomov, I. Verpoest, Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements. Composites Science and Technology 66 (2006) 919-933.
DOI: 10.1016/j.compscitech.2005.08.010
Google Scholar
[2]
P. Badel, E . Vidal-Salle, P. Boisse , Large deformation analysis of fibrous materials using rate constitutive equations, Computers and Structures 86 (2008) 1164-1175.
DOI: 10.1016/j.compstruc.2008.01.009
Google Scholar
[3]
A Charmetant, E . Vidal-Salle, P. Boisse, Hyperelastic modelling for mesoscopic analyses of composite reinforcements, Composites Science and Technology 71 (2011) 1623–1631.
DOI: 10.1016/j.compscitech.2011.07.004
Google Scholar
[4]
T.G. Gutowski, T. Morigaki, Z. Cai, The consolidation of laminate composites. J Comp. Mat. 21 (1987) 172–188.
DOI: 10.1177/002199838702100207
Google Scholar
[5]
S.V. Lomov, Modelling the geometry of textile reinforcements for composites: WiseTex. in: P. Boisse (Eds), Composite reinforcements for optimum performance. Woodhead Publishing Limited; 2011, 200-235.
DOI: 10.1533/9780857093714.2.200
Google Scholar
[6]
S.V. Lomov, I. Verpoest, Compression of woven reinforcements: a mathematical model', J Reinf. Plast. Comp. 19 (2000)1329–1350.
DOI: 10.1106/50rf-dqj7-9rn3-6cpx
Google Scholar
[7]
P.A. Kelly, A viscoelastic model for the compaction of fibrous materials, J. Text. Inst. 102 (2011) 689-699.
Google Scholar
[8]
P.A. Kelly, Transverse compression properties of composite reinforcements, in: P. Boisse (Eds), Composite reinforcements for optimum performance. Woodhead Publishing Limited, 2011, pp.333-366.
DOI: 10.1533/9780857093714.3.333
Google Scholar
[9]
J. Whitcomb, K. Srirengan, C. Chapman, Evaluation of homogenization for global/local stress analysis of textile composites, Composite Structures 31 (1995) 137-149.
DOI: 10.1016/0263-8223(95)00011-9
Google Scholar
[10]
A.G. Prodromou, S.V. Lomov, I. Verpoest, The method of cells and the mechanical properties of textile. Composite Structures 93 (2011) 1290-1299.
DOI: 10.1016/j.compstruct.2010.09.022
Google Scholar
[11]
F. Loix, P., Badel, L. Orgéas, C. Geindreau, P. Boisse, Woven fabric permeability: from textile deformation to fluid flow mesoscale simulations. Composites Science and Technology 68 (2008) 1624–1630.
DOI: 10.1016/j.compscitech.2008.02.027
Google Scholar
[12]
V. Michaud, Permeability properties of reinforcements in composites, in: P. Boisse (Eds), Composite reinforcements for optimum performance. Woodhead Publishing Limited; 2011, 431-458.
DOI: 10.1533/9780857093714.3.431
Google Scholar
[13]
Y. Luo and I. Verpoest, Compressibility and relaxation of a new sandwich textile preform for liquid composite molding. Polym. Comp. 20 (1999) 179–191.
DOI: 10.1002/pc.10345
Google Scholar
[14]
S.V. Lomov, I. Verpoest, T. Peeters, D. Roose, M. Zako, Nesting in textile laminates: geometrical modelling of the laminate. , Composites Science and Technology 63 (2003) 993–1007.
DOI: 10.1016/s0266-3538(02)00318-4
Google Scholar
[15]
C. Truesdell, Hypo-elasticity. J Ration. Mech. Anal. 4 (1955) 83–133.
Google Scholar
[16]
T. Belytschko, K.L. Wing, B. Moran, Non-linear finite elements for continua and structures. Chichester, John Wiley, (2000).
Google Scholar
[17]
P. Boisse, A. Gasser, B. Hagege, J.L. Billoet, Analysis of the mechanical behaviour of woven fibrous material using virtual tests at the unit cell level. J. Mater. Sci. 40 (2005) 5955–62.
DOI: 10.1007/s10853-005-5069-7
Google Scholar
[18]
Q.T. Nguyen, E. Vidal-Sallé, P. Boisse, C.H. Park, A. Saouab, J. Bréard, G. Hivet, Mesoscopic scale analyses of textile composite reinforcement compaction, Composites: Part B 44 (2013) 231–241.
DOI: 10.1016/j.compositesb.2012.05.028
Google Scholar
[19]
E. De Luycker, F. Morestin, P. Boisse, D. Marsal, Simulation of 3D interlock composite preforming, Composite Structures, 88 (2009) 615-623.
DOI: 10.1016/j.compstruct.2008.06.005
Google Scholar