Analyses of Textile Composite Reinforcement Compaction at the Mesoscopic Scale

Article Preview

Abstract:

Mesoscopic simulations of the transverse compression of textile preforms are presented in this paper. They are based on 3D FE models of each yarn in contact with friction with its neighbours. The mesoscopic simulations can be used as virtual compression tests. In addition they determine the internal geometry of the reinforcement after compaction. The internal geometry can be used to compute the permeability of the deformed reinforcement and to calculate the homogenised mechanical properties of the final composite part. A hypoelastic model based on the fibre rotation depicts the mechanical behaviour of the yarn. The compression responses of several layer stacks with parallel or different orientations are computed. The numerical simulations show good agreement when compared to compaction experiments.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

356-362

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.V. Lomov, I. Verpoest, Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements. Composites Science and Technology 66 (2006) 919-933.

DOI: 10.1016/j.compscitech.2005.08.010

Google Scholar

[2] P. Badel, E . Vidal-Salle, P. Boisse , Large deformation analysis of fibrous materials using rate constitutive equations, Computers and Structures 86 (2008) 1164-1175.

DOI: 10.1016/j.compstruc.2008.01.009

Google Scholar

[3] A Charmetant, E . Vidal-Salle, P. Boisse, Hyperelastic modelling for mesoscopic analyses of composite reinforcements, Composites Science and Technology 71 (2011) 1623–1631.

DOI: 10.1016/j.compscitech.2011.07.004

Google Scholar

[4] T.G. Gutowski, T. Morigaki, Z. Cai, The consolidation of laminate composites. J Comp. Mat. 21 (1987) 172–188.

DOI: 10.1177/002199838702100207

Google Scholar

[5] S.V. Lomov, Modelling the geometry of textile reinforcements for composites: WiseTex. in: P. Boisse (Eds), Composite reinforcements for optimum performance. Woodhead Publishing Limited; 2011, 200-235.

DOI: 10.1533/9780857093714.2.200

Google Scholar

[6] S.V. Lomov, I. Verpoest, Compression of woven reinforcements: a mathematical model', J Reinf. Plast. Comp. 19 (2000)1329–1350.

DOI: 10.1106/50rf-dqj7-9rn3-6cpx

Google Scholar

[7] P.A. Kelly, A viscoelastic model for the compaction of fibrous materials, J. Text. Inst. 102 (2011) 689-699.

Google Scholar

[8] P.A. Kelly, Transverse compression properties of composite reinforcements, in: P. Boisse (Eds), Composite reinforcements for optimum performance. Woodhead Publishing Limited, 2011, pp.333-366.

DOI: 10.1533/9780857093714.3.333

Google Scholar

[9] J. Whitcomb, K. Srirengan, C. Chapman, Evaluation of homogenization for global/local stress analysis of textile composites, Composite Structures 31 (1995) 137-149.

DOI: 10.1016/0263-8223(95)00011-9

Google Scholar

[10] A.G. Prodromou, S.V. Lomov, I. Verpoest, The method of cells and the mechanical properties of textile. Composite Structures 93 (2011) 1290-1299.

DOI: 10.1016/j.compstruct.2010.09.022

Google Scholar

[11] F. Loix, P., Badel, L. Orgéas, C. Geindreau, P. Boisse, Woven fabric permeability: from textile deformation to fluid flow mesoscale simulations. Composites Science and Technology 68 (2008) 1624–1630.

DOI: 10.1016/j.compscitech.2008.02.027

Google Scholar

[12] V. Michaud, Permeability properties of reinforcements in composites, in: P. Boisse (Eds), Composite reinforcements for optimum performance. Woodhead Publishing Limited; 2011, 431-458.

DOI: 10.1533/9780857093714.3.431

Google Scholar

[13] Y. Luo and I. Verpoest, Compressibility and relaxation of a new sandwich textile preform for liquid composite molding. Polym. Comp. 20 (1999) 179–191.

DOI: 10.1002/pc.10345

Google Scholar

[14] S.V. Lomov, I. Verpoest, T. Peeters, D. Roose, M. Zako, Nesting in textile laminates: geometrical modelling of the laminate. , Composites Science and Technology 63 (2003) 993–1007.

DOI: 10.1016/s0266-3538(02)00318-4

Google Scholar

[15] C. Truesdell, Hypo-elasticity. J Ration. Mech. Anal. 4 (1955) 83–133.

Google Scholar

[16] T. Belytschko, K.L. Wing, B. Moran, Non-linear finite elements for continua and structures. Chichester, John Wiley, (2000).

Google Scholar

[17] P. Boisse, A. Gasser, B. Hagege, J.L. Billoet, Analysis of the mechanical behaviour of woven fibrous material using virtual tests at the unit cell level. J. Mater. Sci. 40 (2005) 5955–62.

DOI: 10.1007/s10853-005-5069-7

Google Scholar

[18] Q.T. Nguyen, E. Vidal-Sallé, P. Boisse, C.H. Park, A. Saouab, J. Bréard, G. Hivet, Mesoscopic scale analyses of textile composite reinforcement compaction, Composites: Part B 44 (2013) 231–241.

DOI: 10.1016/j.compositesb.2012.05.028

Google Scholar

[19] E. De Luycker, F. Morestin, P. Boisse, D. Marsal, Simulation of 3D interlock composite preforming, Composite Structures, 88 (2009) 615-623.

DOI: 10.1016/j.compstruct.2008.06.005

Google Scholar