Substitution of Virgin Material by Recycled Material from End-of-Life Vehicle (ELV)

Article Preview

Abstract:

The main objective of this study is the substitution of a part of virgin polypropylene with recycled polyolefin from part of End-of-Life Vehicle (ELV) to be used in automobile applications while respecting existing material specifications. First, the recycled plastic sources were characterized by ThermoGravimetric Analysis (TGA), Fourier Transform Infrared Spectrometry (FTIR), Differential Scanning Calorimetry (DSC) and X-ray Fluorescence. As the sources have almost the same properties, the one, with the easiest supply, was selected. During the second step, the study allows comparison of mechanical performance of several formulations with three specific additives made in two injection process conditions. A higher heat temperature and smaller dosage speed reduced the degradation of fibre glass during processing. Moreover, the additive improving the adhesion between the fibre and the polymeric matrix increased by 3% the flexural modulus. This study has enabled the elaboration of a global method coupling sampling methodology, formulation and process optimisation to substitute a virgin material with recycled plastics from ELV.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

836-843

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Véhicules hors d'usage - Rapport annuel de l'Observatoire - Données 2011, ADEME.

Google Scholar

[2] H. G. Karian, Handbook of Polypropylene and Polypropylene Composites, Second Edition, Revised and Expended, Marcel Dekker, Inc, New York, Basel, (2003).

Google Scholar

[3] C. Meran, O. Ozturk, M. Yuksel, Examination of the possibility of recycling and utilizing recycled polyethylene and polypropylene, Materials & Design 29 (2008) 701-705.

DOI: 10.1016/j.matdes.2007.02.007

Google Scholar

[4] K. Wang, F. Addiego, N. Bahlouli, S. Ahzi, Y. Ramond, V. Toniazzo, R. Muller, Analysis of thermomechanical reprocessing effects on polypropylene/ethylene octene copolymer blends, Polymer Degradation and Stability. 97 (2012) 1475-1484.

DOI: 10.1016/j.polymdegradstab.2012.05.005

Google Scholar

[5] E. Ferg, N. Rust, The effect of Pb and other elements found in recycled polypropylene on the manufacturing of lead-acid battery cases, Polymer Testing. 26 (2007) 1001-1014.

DOI: 10.1016/j.polymertesting.2007.07.001

Google Scholar

[6] N. Rust, E. Ferg, I. Masalova, A degradation study of isotactic virgin and recycled polypropylene used in lead acid battery casings, Polymer Testing. 25 (2006) 130-139.

DOI: 10.1016/j.polymertesting.2005.08.009

Google Scholar

[7] Prélèvement et échantillonnage de granulats, Aliapur.

Google Scholar

[8] R.G. Quynn, J. L. Riley, D. A. Young, and H. D. Noether, Density, Crystallinuty, and Heptane Insolubility in Isotactic Polypropylene, Journal of Applied Polymer Science. II (1959) 166-173.

DOI: 10.1002/app.1959.070020506

Google Scholar

[9] A. Amash, P. Zugenmaier, Morphology and properties of isotropic and oriented samples of cellulose fibre–polypropylene composites. Polymer. 41 (200) 1589- 1596.

DOI: 10.1016/s0032-3861(99)00273-6

Google Scholar

[10] M.J. Richardson. Precision differential calorimetry and the heat of fusion of polyethylene, Journal of Polymer Science. Part C (1972) 251–259.

DOI: 10.1002/polc.5070380120

Google Scholar

[11] P. Gy, Hétérogénéité, échantillonnage, homogénéisation : ensemble cohérent de théories, Masson, Paris, (1988).

Google Scholar

[12] E. Schawach, Etude de systèmes multiphases biodégradables à base d'amidon de blé plastifié : relations structure – Propriétés approche de la compatibilisation. (2004).

Google Scholar

[13] R. Willemse, A. Speijer, A. Langeraar, A. P. de Boer, Tensile moduli of co-continuous polymer blends, Polymer. 40 (1999) 6645-6650.

DOI: 10.1016/s0032-3861(98)00874-x

Google Scholar

[14] J. Thomason, The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP, Composites Part A: Applied Science and Manufacturing. 33 (2002) 1641-1652.

DOI: 10.1016/s1359-835x(02)00179-3

Google Scholar

[15] S. -Y. Fu, B. Lauke, Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers, Composites Science and Technology. 56 (1996) 1179-1190.

DOI: 10.1016/s0266-3538(96)00072-3

Google Scholar