Parameter Identification by Inverse Analysis Coupled with a Finite Pointset Method for Polyurethane Foam Expansion

Article Preview

Abstract:

This paper deals with the parameter identification for polyurethane foaming process simulation by using an inverse analysis coupled with a Finite Pointset Method. Simultaneous measurements of the foam height rise, the reaction temperature and the viscosity on a cylindrical cardboard test tube are obtained by using the foam measurement system (FOAMAT). The simulation of the foam expansion is obtained by solving unsteady Navier-Stokes equations coupled with the energy equation, the curing reaction (reaction of isocyanate with polyol) and the foaming reaction (reaction of isocyanate with water to emit the CO2 gas) by using a mesh-free method. The inverse identification method consists in determining the parameters by comparing the computed quantities (height rise, reaction temperature and viscosity) computed by the finite pointset method to those measured experimentally.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 611-612)

Pages:

868-875

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Bikard, J. Bruchon, T. Coupez, L. Silva, Numerical simulation of 3D polyurethane expansion during manufacturing process, Colloids and Surfaces A: Physicochem. Eng. Aspects. 309 (2007) 49-63.

DOI: 10.1016/j.colsurfa.2007.04.025

Google Scholar

[2] D. Seo, J. R. Youn, Numerical analysis on reaction injection molding of polyurethane foam by using a finite volume method, Polymer. 46 (2005) 6482-6493.

DOI: 10.1016/j.polymer.2005.03.126

Google Scholar

[3] S. Geier, C. Winkler, M. Piesche, Numerical Simulation of Mold Filling Processes with Polyurethane Foams, Chem. Eng. Technol. 32 (2009) 1438-1447.

DOI: 10.1002/ceat.200900202

Google Scholar

[4] Y. B. Kim, K. D. Kim, S. E. Hong, J. G. Kim, M. H. Parm, J. H. Kim, Numerical simulation of PU foaming flow in a refrigerator cabinet, Journal of Cellular Plastics. 41 (2005) 251-266.

DOI: 10.1177/0021955x05053524

Google Scholar

[5] E. Oñate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor, C. Sacco, A stabilized finite point method for analysis of fluid mechanics problems, Comput. Meth. Appl. Mech. Engrg. 139 (1996) 315-346.

DOI: 10.1016/s0045-7825(96)01088-2

Google Scholar

[6] E. Oñate , S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor, A finite point method in computational mechanics. Applications to convective transport and fluid flow, Int. J. Numer. Methods Eng. 39 (1996) 3839-3866.

DOI: 10.1002/(sici)1097-0207(19961130)39:22<3839::aid-nme27>3.0.co;2-r

Google Scholar

[7] J. Kuhnert, General smoothed particle hydrodynamics, PhD Thesis, University of Kaiserslautern, (1999).

Google Scholar

[8] G. O. Piloyan, I. D. Ryabchikov, O. S. Novikora, Determination of activation energies of chemical reactions by differential thermal analysis, Nature. 5067 (1966) 1229.

DOI: 10.1038/2121229a0

Google Scholar

[9] M. I. Aranguren, R. J. J. Williams, Kinetic and statistical aspects of the formation of polyurethanes from toluene diisocyanate, Polymer. 27 (1986) 425.

DOI: 10.1016/0032-3861(86)90160-6

Google Scholar

[10] M. Amon, D.C. Denson, A study of the dynamics of foam growth: analysis of the closely spherical bubbles, Polym. Eng. Sci. 24 (1984) 1026-1034.

DOI: 10.1002/pen.760241306

Google Scholar

[11] M. Amon, D.C. Denson, A study of the dynamics of foam growth: analysis and experimental results for bulk density in structural foam molding, Polym. Eng. Sci. 26 (1984) 255-267.

DOI: 10.1002/pen.760260311

Google Scholar

[12] A. Chorin, Numerical solution of the Navier-Stokes equations, J. Math. Comput. 22 (1968) 745-762.

DOI: 10.1090/s0025-5718-1968-0242392-2

Google Scholar

[13] S. P. Sutera, R. Skalak, The history of Poiseuille's law, Annu. Rev. Fluid Mech. 25 (1993) 1-19.

Google Scholar

[14] modeFRONTIER®, User Manual, version 4, ESTECO s. r. l., (2012).

Google Scholar

[15] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A Fast and Elitist Multi-Objective Genetic Algorithm-NSGA-II, KanGAL Report Number 2000001, (2000).

DOI: 10.1007/3-540-45356-3_83

Google Scholar