[1]
Desanaux, C., Contal, A., and Denis, G., Method of producing a polyester resin container and device for performing the same, EP 1 507 642 B1, E. P. Office, (2003).
Google Scholar
[2]
Denis, G., and Contal, A., Process of manufacturing containers made of polyester resin, EP 1 529 620 B1, E. P. Office, (2003).
Google Scholar
[3]
Li, H. X., and Buckley, C. P.: Evolution of strain localization in glassy polymers: A numerical study, International Journal of Solids and Structures 46 (2009) 1607-1623.
DOI: 10.1016/j.ijsolstr.2008.12.002
Google Scholar
[4]
Luo, Y. M., Chevalier, L., and Monteiro, E.: Identification of a Visco‐Elastic Model for PET Near Tg Based on Uni and Biaxial Results, AIP Conference Proceedings 1353 (2011) 750-755.
DOI: 10.1063/1.3589605
Google Scholar
[5]
Billon, N., Picard, M., and Gorlier, E.: Stretch blow moulding of PET; structure development and constitutive model, International Journal of Material Forming (2013) 1-10.
DOI: 10.1007/s12289-013-1131-1
Google Scholar
[6]
Menary, G. H., Tan, C. W., Armstrong, C. G. et al.: Validating Injection Stretch-Blow Molding Simulation Through Free Blow Trials, Polymer Engineering and Science 50 (2010) 1047-1057.
DOI: 10.1002/pen.21555
Google Scholar
[7]
Bordival, M., Schmidt, F. M., Le Maoult, Y. et al., Simulation of the Two Stages Stretch-Blow Molding Process: Infrared Heating and Blowing Modeling, AIP Conference Proceedings, American Institute of Physics, 2007, pp.519-524.
DOI: 10.1063/1.2740863
Google Scholar
[8]
McEvoy, J. P., Armstrong, C. G., and Crawford, R. J.: Simulation of the stretch blow molding process of PET bottles, Advances in Polymer Technology 17 (1998) 339-352.
DOI: 10.1002/(sici)1098-2329(199824)17:4<339::aid-adv5>3.0.co;2-s
Google Scholar
[9]
Wang, S., Makinouchi, A., and Nakagawa, T.: Three-dimensional viscoplastic FEM simulation of a stretch blow molding process, Advances in Polymer Technology 17 (1998) 189-202.
DOI: 10.1002/(sici)1098-2329(199823)17:3<189::aid-adv1>3.0.co;2-o
Google Scholar
[10]
Menary, G. H., Tan, C. W., Picard, M. et al.: Numerical Simulation of Injection Stretch Blow Moulding: Comparison with Experimental Free Blow Trials, AIP Conference Proceedings 907 (2007) 939-944.
DOI: 10.1063/1.2729634
Google Scholar
[11]
Brandau, O.: Stretch Blow Molding. William Andrew, (2012).
Google Scholar
[12]
Gingold, R. A., and Monaghan, J. J.: Smoothed particle hydrodynamics - Theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Society 181 (1977) 375-389.
DOI: 10.1093/mnras/181.3.375
Google Scholar
[13]
Birnbaum, N. K., Francis, N. J., and Gerber, B. I.: Coupled techniques for the simulation of fluid-structure and impact problems, Computer Assisted Methods in Engineering and Science 6 (1999) 295-311.
Google Scholar
[14]
Molteni, D., and Colagrossi, A.: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH, Computer Physics Communications 180 (2009) 861-872.
DOI: 10.1016/j.cpc.2008.12.004
Google Scholar
[15]
Monaghan, J. J.: Smoothed particle hydrodynamics, Reports on Progress in Physics 68 (2005) 1703.
Google Scholar
[16]
Abaqus: Abaqus Analysis User's Manual, Version 6. 12. Dassault Systèmes Simulia Corp., (2012).
Google Scholar
[17]
Grüneisen, E.: Theorie des festen Zustandes einatomiger Elemente, Annalen der Physik 344 (1912) 257-306.
DOI: 10.1002/andp.19123441202
Google Scholar
[18]
Shyue, K. -M.: A Fluid-Mixture Type Algorithm for Compressible Multicomponent Flow with Mie–Grüneisen Equation of State, Journal of Computational Physics 171 (2001) 678-707.
DOI: 10.1006/jcph.2001.6801
Google Scholar
[19]
Jeanloz, R.: Shock wave equation of state and finite strain theory, Journal of Geophysical Research: Solid Earth 94 (1989) 5873-5886.
DOI: 10.1029/jb094ib05p05873
Google Scholar
[20]
Shukla, A., Ravichandran, G., and Rajapakse, Y.: Dynamic Failure of Materials and Structures. Springer, (2009).
Google Scholar
[21]
Buckley, C. P., and Jones, D. C.: Glass-Rubber Constitutive Model for Amorphous Polymers near the Glass-Transition, Polymer 36 (1995) 3301-3312.
DOI: 10.1016/0032-3861(95)99429-x
Google Scholar
[22]
Buckley, C. P., Jones, D. C., and Jones, D. P.: Hot-drawing of poly(ethylene terephthalate) under biaxial stress: application of a three-dimensional glass—rubber constitutive model, Polymer 37 (1996) 2403-2414.
DOI: 10.1016/0032-3861(96)85352-3
Google Scholar
[23]
Adams, A. M., Buckley, C. P., and Jones, D. P.: Biaxial hot drawing of poly(ethylene terephthalate): measurements and modelling of strain-stiffening, Polymer 41 (2000) 771-786.
DOI: 10.1016/s0032-3861(98)00834-9
Google Scholar
[24]
Zimmer, J., Detrois, C., and Stommel, M.: Evaluation Method for Stretch Blow Moulding Simulations with Process-Oriented Experiments, Key Engineering Materials 554-557 (2013) 1658-1668.
DOI: 10.4028/www.scientific.net/kem.554-557.1658
Google Scholar
[25]
Venkateswaran, G., Cameron, M. R., and Jabarin, S. A.: Effects of temperature profiles through preform thickness on the properties of reheat-blown PET containers, Advances in Polymer Technology 17 (1998) 237-249.
DOI: 10.1002/(sici)1098-2329(199823)17:3<237::aid-adv4>3.0.co;2-t
Google Scholar
[26]
Shelby, M. D., Horton, K. D., and Hall, H. P., Method and Device for Predicting Temperature Profiles Throughout the Thickness of a Polymer Preform, US 20040024560A1, (2004).
Google Scholar