[1]
A.H. Bloksma, Rheology of the breadmaking process. Cereal Foods World, 35 (1990), 228-236.
Google Scholar
[2]
L.J. Gibson, M.F. Ashby, Cellular solids, structure and properties, second ed., Cambridge Press University, (1997).
Google Scholar
[3]
S. Guessasma, L. Chaunier, G. Della Valle, D. Lourdin D. Mechanical modelling of cereal solid foods. Trends in Food Science and Technology, 22 (2011), 142-153.
DOI: 10.1016/j.tifs.2011.01.005
Google Scholar
[4]
M.A.P. Mohammed, M.N. Tarleton, M.N. Charalambides, J. G, Williams, Mechanical characterization and micromechanical modeling of bread dough. Journal of Rheology, 57 (2013), 249-272.
DOI: 10.1122/1.4768463
Google Scholar
[5]
G. Della Valle, H. Chiron, L. Cicerelli, K. Kansou, K. Katina, A. Ndiaye, M. Whitworth, K. Poutanen, Basic knowledge models for the design of bread texture. Trends in Food Science and Technology, 24, 2014, in Press.
DOI: 10.1016/j.tifs.2014.01.003
Google Scholar
[6]
J. Zhang, A.K. Datta, Mathematical modeling of bread baking process. Journal of Food Engineering, 75 (2006), 78–89.
DOI: 10.1016/j.jfoodeng.2005.03.058
Google Scholar
[7]
G. Della Valle, H. Chiron, V. Jury, M. Raitière, AL. Réguerre, Kinetics of crust formation during conventional french bread baking. Journal of Cereal Science, 56 (2012), 440-444.
DOI: 10.1016/j.jcs.2012.05.004
Google Scholar
[8]
L. Segui, C. Barrera, L. Oliver, P. Fito, Practical application of the SAFES (systematic approach to food engineering systems) methodology to the breadmaking process. Journal of Food Engineering, 83 (2007), 219–228.
DOI: 10.1016/j.jfoodeng.2007.02.021
Google Scholar
[9]
S. Chakrabarti-Bell, J. Bergström, E. Lindskog, T. Sridhar, Computational modeling of dough sheeting and physical interpretation of the non-linear rheological behavior of wheat flour dough. Journal of Food Engineering 100 (2010), 278-288.
DOI: 10.1016/j.jfoodeng.2010.04.010
Google Scholar
[10]
R.K. Connelly, J.L. Kokini, The effect of shear thinning and differential viscoelasticity on mixing in a model 2D mixer as determined using FEM with particle tracking. Journal of Non-Newtonian Fluid Mechanics, 123 (2004), 1–17.
DOI: 10.1016/j.jnnfm.2004.03.006
Google Scholar
[11]
A. Shehzad, H. Chiron, G. Della Valle, B. Lamrini, D. Lourdin D. Rheological and energetical approaches of wheat flour dough mixing. Journal of Food Engineering, 110 (2012), 60-70.
DOI: 10.1016/j.jfoodeng.2011.12.008
Google Scholar
[12]
A. Angioloni, M. Dalla Rosa, Dough thermo-mechanical properties: influence of sodium chloride, mixing time and equipment. Journal of Cereal Science, 41 (2005), 327-331.
DOI: 10.1016/j.jcs.2004.10.004
Google Scholar
[13]
J. Lefebvre, An outline of the non-linear viscoelastic behaviour of wheat flour dough in shear. Rheologica Acta, 45 (2006), 525-538.
DOI: 10.1007/s00397-006-0093-3
Google Scholar
[14]
G.G. Bellido, M.G. Scanlon, J.H. Page, B. Hallgrimsson, The bubble size distribution in wheat flour dough. Food Research International, 39 (2006), 1058-1066.
DOI: 10.1016/j.foodres.2006.07.020
Google Scholar
[15]
A. Ndiaye, G. Della Valle, P. Roussel, Qualitative modelling of a multi-step process: the case of French breadmaking. Expert System with Application, 39 (2009), 1020-1038.
DOI: 10.1016/j.eswa.2007.11.006
Google Scholar
[16]
K. Kansou, K., G. Della Valle, A. Ndiaye, Integrating expert knowledge in cereal food manufacturing. ASME, Proceedings of the 11th Biennial Conference on Engineering Systems Design and Analysis, Vol 4 (2012), 195-202.
DOI: 10.1115/esda2012-82954
Google Scholar
[17]
P. Babin, G. Della Valle, R. Dendievel, N. Lassoued, L. Salvo. Mechanical properties of bread crumbs from tomography based Finite Element simulations. Journal of Material Science, 40 (2005), 5867-5873.
DOI: 10.1007/s10853-005-5021-x
Google Scholar
[18]
M. Amon, C.D. Denson, A study of the dynamics of the growth of closely spaced spherical bubbles. Polymer Engineering and Science, 24 (1984)1026-1034.
DOI: 10.1002/pen.760241306
Google Scholar
[19]
J. Bikard , T. Coupez, G. Della Valle, B. Vergnes. Simulation of bread making process using a direct 3D numerical method at microscale: analysis of baking step. International Journal of Material Forming, 5 (2012), 11-24.
DOI: 10.1007/s12289-010-1018-3
Google Scholar
[20]
C.V. Trappey, H.Y. Wu, An evaluation of the time-varying extended logistic, simple logistic and Gompertz models for the forecasting short product lifecycles. Advanced Engineering Informatics, 22 (2008), 421-430.
DOI: 10.1016/j.aei.2008.05.007
Google Scholar
[21]
A. Shehzad, H. Chiron, G. Della Valle, K. Kansou, A. Ndiaye, A. L. Réguerre, Porosity and stability of bread dough determined by video image analysis for different compositions and mixing conditions. Food Research International, 43 (2010).
DOI: 10.1016/j.foodres.2010.05.019
Google Scholar
[22]
A. Turbin-Orger, L. Chaunier, H. Chiron, G. Della Valle, Envisioning wheat flour dough as a triphasic medium to predict bubbles stability. Copenhagen, June 12th-14th, Annual transactions of the Nordic Rheology Society, 21 (2013).
DOI: 10.1016/j.jfoodeng.2015.07.029
Google Scholar
[23]
K. Kansou, H. Chiron, G. Della Valle, A. Ndiaye, P. Roussel, A. Shehzad, Modelling wheat flour dough proofing behaviour: effects of mixing conditions on porosity and stability. Food and Bioprocess Technology, 6 (2013), 2150-2164.
DOI: 10.1007/s11947-012-0854-1
Google Scholar