[1]
Mitcheson P D, Yeatman E M, Energy harvesting from human and machine motion for wireless electronic devices, Proceedings of the IEEE 96, pp.1457-1486, (2008).
DOI: 10.1109/jproc.2008.927494
Google Scholar
[2]
Chew Z and Li L, Design and characterization of a piezoelectric scavenging device with multiple resonant frequencies, Sensors and Actuators 162, pp.82-92, (2010).
DOI: 10.1016/j.sna.2010.06.017
Google Scholar
[3]
Morimoto K, Kanno I, High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT , Sensors and Actuators 162; pp.172-180, (2010).
DOI: 10.1016/j.sna.2010.06.028
Google Scholar
[4]
Jedol D, W.Y.H. Liew, Increasing the bandwidth of the width-split piezoelectric energy harvester, Microelectronic Journal 43, pp.484-491, (2012).
DOI: 10.1016/j.mejo.2012.03.012
Google Scholar
[5]
Shu Y C and Lien I C, Analysis of power output for piezoelectric energy harvesting systems, Smart Mater. Struct. 15, pp.1499-1512, (2006).
DOI: 10.1088/0964-1726/15/6/001
Google Scholar
[6]
Kok S, White N M and Harris N R, Fabrication and characterization of free-standing thick-film piezoelectric cantilevers for energy harvesting, Meas. Sci. Technol. 20, 124010, (2009).
DOI: 10.1088/0957-0233/20/12/124010
Google Scholar
[7]
Ferrari M, Ferrari V, Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters, Sensors and actuators, 162, pp.425-431, (2010).
DOI: 10.1016/j.sna.2010.05.022
Google Scholar
[8]
D. Vatansever, R L Hadimani, T Shah and E Siores, An investigation of energy harvesting from renewable sources with PVDF and PZT, Smart Mater. Struct. 20, 055019, (2011).
DOI: 10.1088/0964-1726/20/5/055019
Google Scholar
[9]
M. Parker, Ambient Energy Harvesting, BS thesis, School of Information Technology and Engineering, University of Queensland, Brisbane, QLD, (2003).
Google Scholar
[10]
G.W. Taylor, J.R. Burns, S.M. Kamman, W.B. Powers, and T.R. Welsh, The Energy Harvesting Eel: A Small Subsurface Ocean/River Power Generator, IEEE Journal of Oceanic Engineering, Vol. 26, No. 4, pp.539-547, (2001).
DOI: 10.1109/48.972090
Google Scholar
[11]
Shuguang Li, Jianping Yuan, Hod Lipson, Ambient wind energy harvesting using cross-flow fluttering, Journal of applied physics 109; 026104, (2011).
DOI: 10.1063/1.3525045
Google Scholar
[12]
R. Myers, M. Vickers, H. Kim, and S. Priya, Small Scale Windmill, Appl. Phys. Lett., Vol. 90, No. 5, (2007).
DOI: 10.1063/1.2435346
Google Scholar
[13]
M. Amin Karami, Justin R. Farmer, PARAMETRICALLY EXCITED NONLINEAR PIEZOELECTRIC WIND ENERGY HARVESTER, Proceedings of the ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Arizona, USA, (2011).
DOI: 10.1115/smasis2011-5042
Google Scholar
[14]
P.D. Mitcheson, E.M. Yeatman, G. K Rao, A.S. Holmes, T.C. Green, Energy harvesting from human and machine motion for wireless electronic devices, Proceedings of the IEEE Vol. 96, No. 9, pp.1457-1486, (2008).
DOI: 10.1109/jproc.2008.927494
Google Scholar
[15]
Renwen Chen, New ambient energy harvesting technology [M]. National defense industry press, CN, (2011).
Google Scholar
[16]
A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Application, 2nd edition, John Wiley and Sons, pp.390-393; (2003).
Google Scholar