Uncertainty Evaluation for Surgical Processes

Article Preview

Abstract:

Principles of uncertainty evaluation for measurement processes and capability studies for production processes have been known for several years and are established in many producing enterprises where they ensure capable and controlled processes. The ability to quantify the processes risk is also desirable for a completely different field, for medical surgery. Especially for new and minimally invasive surgery it is very important to estimate and state the risk of the surgical intervention for the individual patient. To achieve this, principles of metrology and production engineering are transferred to the medical domain and are exemplarily applied for minimally invasive surgery at the inner ear. The contribution shows how the individual patients risk can be expressed analogous to the calculation of capability indices (ISO 22514-1) and how the patients risk for this intervention is directly affected by uncertainty contributions along the surgical process chain.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

317-326

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Widmann, Image-guided surgery and medical robotics in the cranial area, Int J. Med Robot, 3, 1(2007).

Google Scholar

[2] R. F. Labadie, R. Balachandran, J. E. Mitchell, J. H. Noble, O. Majdani, D. S. Haynes, M. L. Bennett, B. M. Dawant, and J. M. Fitzpatrick, Clinical validation study of percutaneous cochlear access using patient-customized microstereotactic frames, Otology & Neurology, 31, 1 (2010).

DOI: 10.1097/mao.0b013e3181c2f81a

Google Scholar

[3] A. Hussong, T. S. Rau, H. Eilers, S. Baron, B. Heimann, M. Leinung, T. Lenarz, and O. Majdani, Conception and design of an automated insertion tool for cochlear implants, EMBC (2008) 5593–5596.

DOI: 10.1109/iembs.2008.4650482

Google Scholar

[4] I. Stenin, S. Hansen, M. Becker, J. Hirschfeld, B. Bojovic, T. Klenzer, and J. Schipper, MUKNO -Multi-Port-Knochenchirurgie am Beispiel der Otobasis: Virtuelle Planung und Machbarkeitsanalyse multiangulärer Bohrkanäle, CURAC2012@MEDICA, CD, Session V, (2012).

Google Scholar

[5] M. Feng, Y. Fu, B. Pan, and C. Liu, Development of a medical robot system for minimally invasive surgery, Int J Med Robot Comp, 8 (2012) 85–96.

DOI: 10.1002/rcs.440

Google Scholar

[6] R. L. Galloway and R. J. Maciunas, Stereotaxic Neurosurgery, Crit Rev Biomed Eng, 18 (1990) 181–205.

Google Scholar

[7] R. Steinmeier, J. Rachinger, M. Kaus, O. Ganslandt, W. Huk, and R. Fahlbusch, Factors influencing the application accuracy of neuronavigation systems, Stereot Funct Neuros, 75, 4 (2000) 188–202.

DOI: 10.1159/000048404

Google Scholar

[8] W. Wittmann, T. Wenger, B. Zaminer, and T. C. Lueth, Automatic Correction of Registration Errors in Surgical Navigation Systems, IEEE T Bio-Med Eng, 58, 10 (2011) 2922–2930.

DOI: 10.1109/tbme.2011.2163156

Google Scholar

[9] R. R. Shamir, L. Joskowicz, and Y. Shoshan, Fiducial Optimization for Minimal Target Registration Error in Image-Guided Neurosurgery, IEEE T Med Imaging, 31 (2012) 725–737.

DOI: 10.1109/tmi.2011.2175939

Google Scholar

[10] DIN, International vocabulary of metrology (VIM), ISO/IEC-guideline 99 (2010) 3rd ed., Beuth.

Google Scholar

[11] ISO, 98-3, Guide to the expression of uncertainty measurement (2008).

Google Scholar

[12] ISO, 22514-1, Statistical methods in process management - Capability and performance - Part 1: General principles and concepts (2009).

Google Scholar

[13] ISO, 22514-7, Statistical methods in process management - Capability and performance - Part 7: Capability of measurement processes (2010).

Google Scholar

[14] ISO, 15530-3, Geometrical product specifications (GPS) - Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement - Part 3: Use of calibrated workpieces or measurement standards (2012).

DOI: 10.3403/30198174

Google Scholar

[15] Verein deutscher Ingenieure; Verband der Elektrotechnik Elektronik Informationstechnik, 2630 Blatt 1. 4 - Entwurf, Computertomografie in der dimensionellen Messtechnik (2008).

Google Scholar

[16] R. Schmitt, M. Nau, S. Pollmanns, S. Hansen, and J. Schipper, Bestimmung relevanter Einflussfaktoren auf die Unsicherheit minimalinvasiver Operationen am Beispiel der Otobasis, CURAC2012@MEDICA, CD, Session II (2012) 11-18.

Google Scholar

[17] R. Gutbell, M. Becker, and S. Wesarg, Ein Prototyp zur Planung von Bohrpfaden für die minimal-invasive Chirurgie an der Otobasis, Bildverarbeitung für die Medizin 2012, Springer (2012) 171–177.

DOI: 10.1007/978-3-642-28502-8_31

Google Scholar

[18] R. Schmitt, S. Pollmanns, and M. Nau, Accuracy Study of medical CT Systems for Image-Guided Surgery according to VDI/VDE GMA 2630 Guideline, Conference on Industrial Computed Tomography (ICT): Shaker (2012) 209–217.

Google Scholar

[19] G. Widmann, R. Stoffner, and R. Bale, Errors and error management in image-guided craniomaxillofacial surgery, Oral Surg Oral Med O, 107, 5 (2009) 701–715.

DOI: 10.1016/j.tripleo.2009.02.011

Google Scholar

[20] ISO, 14253-1, Geometrical product specifications (GPS) - Inspection by measurement of workpieces and measuring equipment - Part 1: Decision rules for proving conformance or non-conformance with specifications (1999).

DOI: 10.3403/01722655u

Google Scholar