[1]
VDI/VDE 2630-1. 2. Computed Tomography in Dimensional Measurement-Influencing Variables on Measurement Results and Recommendations for Computed Tomography Dimensional Measurements. (2010).
Google Scholar
[2]
J.P. Kruth, M. Bartscher, S. Carmignato, R. Schmitt, L. De Chiffre, A. Weckenmann. Computed Tomography for Dimensional Metrology. CIRP Annals, 60 (2009) 821-842.
DOI: 10.1016/j.cirp.2011.05.006
Google Scholar
[3]
R.C. Gonzalez, R.E. Woods. Digital Image Processing. Addison Wesley (1993).
Google Scholar
[4]
K. Kiekens, F. Welkenhuyzen, Y. Tan, P. Bleys, A. Voet, J.P. Kruth, W. Dewulf. A test object with parallel grooves for calibration and accuracy assessment of industrial computed tomography (CT) metrology. Measurement Science and Technology, 22 (2011).
DOI: 10.1088/0957-0233/22/11/115502
Google Scholar
[5]
H. Kalinic. Atlas-based image segmentation: A Survey. Croatian Scientific Bibliography. (2009).
Google Scholar
[6]
Ding, F., Leow, W.K., Wang, S.C. Segmentation of 3D CT volume images using a single 2D atlas. ICCV Workshop on Computer Vision for Biomedical Image Applications. 3765 (2005) 459-468.
DOI: 10.1007/11569541_46
Google Scholar
[7]
D. Pham, C. Xu, J. Prince. Current methods in medical image segmentation. Annual Review of Biomedical Engineering. 2 (2000) 315–337.
DOI: 10.1146/annurev.bioeng.2.1.315
Google Scholar
[8]
S. Osher, R. Fedkiwy. Level Set Methods: An Overview and Some Recent Results. Journal of Computational Physics. 169 (2001) 463–502.
DOI: 10.1006/jcph.2000.6636
Google Scholar
[9]
J. Montagnat, H. Delingette, N. Ayache. A review of deformable surfaces: topology, geometry and deformation. Image and Vision Computing. 19 (2001) 1023–1040.
DOI: 10.1016/s0262-8856(01)00064-6
Google Scholar
[10]
Y. J. Zhang. Quantitative Study of 3D Gradient Operators. Image and Vision Computing. 11 (1993) 611-622.
DOI: 10.1016/0262-8856(93)90057-n
Google Scholar
[11]
P. Bhattacharya, D. Wild. A new Edge Detector for Grey Volumetric Data. Computers in Biology and Medicine. 26 (1996) 315-328.
DOI: 10.1016/0010-4825(96)00003-0
Google Scholar
[12]
R. Mehrotra, S. Zhan. A Zero-crossing-based Optimal Three-dimensional Edge Detector. CVGIP Image Understanding. 59 (1994) 242-253.
DOI: 10.1006/ciun.1994.1016
Google Scholar
[13]
O. Monga, R. Deriche, J. M. Rocchisani. 3D Edge Detection using Recursive Filtering. Computer, Vision, Graphics and Image Processing. 53 (1991) 76-87.
DOI: 10.1016/1049-9660(91)90006-b
Google Scholar
[14]
T. A. Clarke, M. A. R. Cooper, J. G. Fryer. An Estimator for the Random Error in Subpixel Target Location and its use in the Bundle Adjustment. Optical 3-D Measurements Techniques. 2 (1993) 161-168.
DOI: 10.1117/12.169832
Google Scholar
[15]
A. J. Tabatabai, O. R. MitcheU. Edge Location to Subpixel Valúes in Digital Imagery. Pattern Analysis and Machine Intelligence, IEEE Transactions. 6 (1984) 188-201.
DOI: 10.1109/tpami.1984.4767502
Google Scholar
[16]
S. Chitchian, T.P. Weldon, M.A. Fiddy, N.M. Fried. Combined Image-Processing Algorithms for Improved Optical Coherence Tomography of Prostate Nerves. Journal of Biomedical Optics. 15 (2010) 0460141.
DOI: 10.1117/1.3481144
Google Scholar
[17]
K. Rathnayakaa, T. Sahamaa, M. Schuetza B. Schmutza. Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions. Medical Engineering & Physics. 33 (2011) 226–233.
DOI: 10.1016/j.medengphy.2010.10.002
Google Scholar
[18]
J. Canny. A Computational Approach to Edge Detection. Pattern Analysis and Machine Intelligence, IEEE Transaction. 8 (1986) 679–698.
DOI: 10.1109/tpami.1986.4767851
Google Scholar
[19]
R. Duda, P. Hart, D. Stork. Pattern classication, second ed., John Wiley & Sons, (2001).
Google Scholar
[20]
S. Thilagamani1, N. Shanthi. A Survey on Image Segmentation Through Clustering. International Journal of Research and Reviews in Information Sciences. 1 (2011).
Google Scholar
[21]
P.K. Sahoo, S. Soltani, A.K.C. Wong , Y. Chen. A Survey of Thresholding Techniques. Computer Graphics and Image Process. 41 (1988) 233-260.
DOI: 10.1016/0734-189x(88)90022-9
Google Scholar
[22]
S.U. Le, S.Y. Chung, R.H. Park. A Comparative Performance Study of Several Global Thresholding Techniques for Segmentation. Graphical Models and Image Processing. 52 (1990) 171-190.
DOI: 10.1016/0734-189x(90)90053-x
Google Scholar
[23]
C.A. Glasbey. An analysis of histogram-based thresholding algorithms, Graphical Models and Image Processing. 55 (1993) 532-537.
DOI: 10.1006/cgip.1993.1040
Google Scholar
[24]
L. Shapiro, G. Stockman. Computer Vision. Prentice Hall. (2002).
Google Scholar
[25]
S.U. Indira, A.C. Ramesh A C. Image Segmentation Using Artificial Neural Network and Genetic Algorithm: A Comparative Analysis. International Conference on Process Automation, Control and Computing (PACC), Coimbatore. 1 (2011) 1-6.
DOI: 10.1109/pacc.2011.5979059
Google Scholar
[26]
K. Wen-Xiong, Y. Qing-Qiang, L. Run-Peng. The Comparative Research on Image Segmentation Algorithms. First International Workshop on Education Technology and Computer Science. 2 (2009) 703-707.
Google Scholar
[27]
S. Beucher, C. Lantuéjoul, Use of watersheds in contour detection. Proceedings of International Workshop on Image Processing, Real-time Edge and Motion Detection/Estimation. (1979).
Google Scholar
[28]
S. Raut, M. Raghuvanshi, R. Dharaskar, A. Raut. Image Segmentation – A State Of Art Survey for Prediction. International Conference on Advanced Computer Control. (2008) 420-424.
DOI: 10.1109/icacc.2009.78
Google Scholar
[29]
R. Jiménez, S. Ontiveros, S. Carmignato, J.A. Yagüe. Correction strategies for the use of a conventional micro-CT cone beam machine for metrology applications Procedia CIRP. 2 (2012) 34-37.
DOI: 10.1016/j.procir.2012.05.035
Google Scholar
[30]
S. Ontiveros, J.A. Yagüe-Fabra, R. Jiménez, G. Tosello, S. Gasparin, A. Pierobon, S. Carmignato, H.N. Hansen. Dimensional Measurement of micro moulded parts by Computed Tomography. Measurement Science and Technology. 23 (2012) 125401.
DOI: 10.1088/0957-0233/23/12/125401
Google Scholar