A Comparative of 3D Surface Extraction Methods for Potential Metrology Applications

Article Preview

Abstract:

The number of factors influencing the CT process for metrology applications increases its complexity and cause the loss of accuracy during CT measurements. One of the most critical is the edge detection also called surface extraction or image segmentation, which is the process of surface formation from the CT`s volume data. This paper presents different edge detection methods commonly used in areas like machine and computer vision and they are analyzed as an alternative to the commonly and commercially used for CT metrology applications. Each method is described and analyzed separately in order to highlight its advantages and disadvantages from a metrological point of view. An experimental comparative between two of them is also shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-21

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] VDI/VDE 2630-1. 2. Computed Tomography in Dimensional Measurement-Influencing Variables on Measurement Results and Recommendations for Computed Tomography Dimensional Measurements. (2010).

Google Scholar

[2] J.P. Kruth, M. Bartscher, S. Carmignato, R. Schmitt, L. De Chiffre, A. Weckenmann. Computed Tomography for Dimensional Metrology. CIRP Annals, 60 (2009) 821-842.

DOI: 10.1016/j.cirp.2011.05.006

Google Scholar

[3] R.C. Gonzalez, R.E. Woods. Digital Image Processing. Addison Wesley (1993).

Google Scholar

[4] K. Kiekens, F. Welkenhuyzen, Y. Tan, P. Bleys, A. Voet, J.P. Kruth, W. Dewulf. A test object with parallel grooves for calibration and accuracy assessment of industrial computed tomography (CT) metrology. Measurement Science and Technology, 22 (2011).

DOI: 10.1088/0957-0233/22/11/115502

Google Scholar

[5] H. Kalinic. Atlas-based image segmentation: A Survey. Croatian Scientific Bibliography. (2009).

Google Scholar

[6] Ding, F., Leow, W.K., Wang, S.C. Segmentation of 3D CT volume images using a single 2D atlas. ICCV Workshop on Computer Vision for Biomedical Image Applications. 3765 (2005) 459-468.

DOI: 10.1007/11569541_46

Google Scholar

[7] D. Pham, C. Xu, J. Prince. Current methods in medical image segmentation. Annual Review of Biomedical Engineering. 2 (2000) 315–337.

DOI: 10.1146/annurev.bioeng.2.1.315

Google Scholar

[8] S. Osher, R. Fedkiwy. Level Set Methods: An Overview and Some Recent Results. Journal of Computational Physics. 169 (2001) 463–502.

DOI: 10.1006/jcph.2000.6636

Google Scholar

[9] J. Montagnat, H. Delingette, N. Ayache. A review of deformable surfaces: topology, geometry and deformation. Image and Vision Computing. 19 (2001) 1023–1040.

DOI: 10.1016/s0262-8856(01)00064-6

Google Scholar

[10] Y. J. Zhang. Quantitative Study of 3D Gradient Operators. Image and Vision Computing. 11 (1993) 611-622.

DOI: 10.1016/0262-8856(93)90057-n

Google Scholar

[11] P. Bhattacharya, D. Wild. A new Edge Detector for Grey Volumetric Data. Computers in Biology and Medicine. 26 (1996) 315-328.

DOI: 10.1016/0010-4825(96)00003-0

Google Scholar

[12] R. Mehrotra, S. Zhan. A Zero-crossing-based Optimal Three-dimensional Edge Detector. CVGIP Image Understanding. 59 (1994) 242-253.

DOI: 10.1006/ciun.1994.1016

Google Scholar

[13] O. Monga, R. Deriche, J. M. Rocchisani. 3D Edge Detection using Recursive Filtering. Computer, Vision, Graphics and Image Processing. 53 (1991) 76-87.

DOI: 10.1016/1049-9660(91)90006-b

Google Scholar

[14] T. A. Clarke, M. A. R. Cooper, J. G. Fryer. An Estimator for the Random Error in Subpixel Target Location and its use in the Bundle Adjustment. Optical 3-D Measurements Techniques. 2 (1993) 161-168.

DOI: 10.1117/12.169832

Google Scholar

[15] A. J. Tabatabai, O. R. MitcheU. Edge Location to Subpixel Valúes in Digital Imagery. Pattern Analysis and Machine Intelligence, IEEE Transactions. 6 (1984) 188-201.

DOI: 10.1109/tpami.1984.4767502

Google Scholar

[16] S. Chitchian, T.P. Weldon, M.A. Fiddy, N.M. Fried. Combined Image-Processing Algorithms for Improved Optical Coherence Tomography of Prostate Nerves. Journal of Biomedical Optics. 15 (2010) 0460141.

DOI: 10.1117/1.3481144

Google Scholar

[17] K. Rathnayakaa, T. Sahamaa, M. Schuetza B. Schmutza. Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions. Medical Engineering & Physics. 33 (2011) 226–233.

DOI: 10.1016/j.medengphy.2010.10.002

Google Scholar

[18] J. Canny. A Computational Approach to Edge Detection. Pattern Analysis and Machine Intelligence, IEEE Transaction. 8 (1986) 679–698.

DOI: 10.1109/tpami.1986.4767851

Google Scholar

[19] R. Duda, P. Hart, D. Stork. Pattern classication, second ed., John Wiley & Sons, (2001).

Google Scholar

[20] S. Thilagamani1, N. Shanthi. A Survey on Image Segmentation Through Clustering. International Journal of Research and Reviews in Information Sciences. 1 (2011).

Google Scholar

[21] P.K. Sahoo, S. Soltani, A.K.C. Wong , Y. Chen. A Survey of Thresholding Techniques. Computer Graphics and Image Process. 41 (1988) 233-260.

DOI: 10.1016/0734-189x(88)90022-9

Google Scholar

[22] S.U. Le, S.Y. Chung, R.H. Park. A Comparative Performance Study of Several Global Thresholding Techniques for Segmentation. Graphical Models and Image Processing. 52 (1990) 171-190.

DOI: 10.1016/0734-189x(90)90053-x

Google Scholar

[23] C.A. Glasbey. An analysis of histogram-based thresholding algorithms, Graphical Models and Image Processing. 55 (1993) 532-537.

DOI: 10.1006/cgip.1993.1040

Google Scholar

[24] L. Shapiro, G. Stockman. Computer Vision. Prentice Hall. (2002).

Google Scholar

[25] S.U. Indira, A.C. Ramesh A C. Image Segmentation Using Artificial Neural Network and Genetic Algorithm: A Comparative Analysis. International Conference on Process Automation, Control and Computing (PACC), Coimbatore. 1 (2011) 1-6.

DOI: 10.1109/pacc.2011.5979059

Google Scholar

[26] K. Wen-Xiong, Y. Qing-Qiang, L. Run-Peng. The Comparative Research on Image Segmentation Algorithms. First International Workshop on Education Technology and Computer Science. 2 (2009) 703-707.

Google Scholar

[27] S. Beucher, C. Lantuéjoul, Use of watersheds in contour detection. Proceedings of International Workshop on Image Processing, Real-time Edge and Motion Detection/Estimation. (1979).

Google Scholar

[28] S. Raut, M. Raghuvanshi, R. Dharaskar, A. Raut. Image Segmentation – A State Of Art Survey for Prediction. International Conference on Advanced Computer Control. (2008) 420-424.

DOI: 10.1109/icacc.2009.78

Google Scholar

[29] R. Jiménez, S. Ontiveros, S. Carmignato, J.A. Yagüe. Correction strategies for the use of a conventional micro-CT cone beam machine for metrology applications Procedia CIRP. 2 (2012) 34-37.

DOI: 10.1016/j.procir.2012.05.035

Google Scholar

[30] S. Ontiveros, J.A. Yagüe-Fabra, R. Jiménez, G. Tosello, S. Gasparin, A. Pierobon, S. Carmignato, H.N. Hansen. Dimensional Measurement of micro moulded parts by Computed Tomography. Measurement Science and Technology. 23 (2012) 125401.

DOI: 10.1088/0957-0233/23/12/125401

Google Scholar