Effect of Holding Time on Microstructure and Mechanical Properties of Diffusion-Bonded Mg1/Pure Ag Foil/1060Al Joints

Article Preview

Abstract:

Mg1 and 1060 Al were diffusion-bonded by using pure silver foil under different holding times (10 min~120 min). The interface of the joint consists of Mg-Ag diffusion zone, Ag foil interlayer and Ag-Al diffusion zone. The distributions of Mg, Ag and Al show ladder-like distributions at the interface of the joints. When the holding time is below 90 min, silver foil has impeded the inter-diffusion of Mg and Al. When the holding time is beyond 90 min, the brittle eutectic Mg-Al intermetallic compounds (IMCs) cannot be avoided. Mg3Ag and MgAg intermetallic compounds formed on Mg base side. Ag2Al intermetallic compound grew on Al base side. The thicknesses of Mg3Ag, MgAg and Ag2Al increased linearly with the increasing holding time, which is contrary to that of the silver foil. The growth rate relationship of the formed IMCs is MgAg > Ag2Al > Mg3Ag according the slope values of the fitted lines. The hardness sharply increased at the interface because of the formation of IMCs. The maximum hardness values of three IMCs Mg3Ag, MgAg and Ag2Al are 287.5 HV, 196.5 HV and 175.7 HV respectively. The hardness of each IMC layer increased with the extension of holding time. The shear strength of the joints decreased from 10.5 MPa to 4.6 MPa with the rising holding time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

280-285

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.L. Mordike, T. Ebert, Magnesium: Properties-applications-potential, Mater. Sci. Eng. A 302 (2001) 37-45.

Google Scholar

[2] F.H. Froes, D. Eliezer, E. Aghion, The science, technology, and applications of magnesium, JOM. 50 (1998) 30-34.

DOI: 10.1007/s11837-998-0411-6

Google Scholar

[3] M.A. Mofid, A. Abdollah-Zadeh, F. Malek Ghaini, The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy, Mater. Des. 36 (2012) 161-167.

DOI: 10.1016/j.matdes.2011.11.004

Google Scholar

[4] A. Kostka, R.S. Coelho, J. Dos Santos, A.R. Pyzalla, Microstructure of friction stir welding of aluminium alloy to magnesium alloy, Scr. Mater. 60 (2009) 953-956.

DOI: 10.1016/j.scriptamat.2009.02.020

Google Scholar

[5] X. Li, W. Liang, X. Zhao, Y. Zhang, X. Fu, F. Liu, Bonding of Mg and Al with Mg–Al eutectic alloy and its application in aluminum coating on magnesium, J. Alloys Compd. 471 (2009) 408-411.

DOI: 10.1016/j.jallcom.2008.03.107

Google Scholar

[6] M.J. Fernandus, T. Senthilkumar, V. Balasubramanian, S. Rajakumar, Optimizing Diffusion Bonding Parameters in AA6061-T6 Aluminum and AZ80 Magnesium Alloy Dissimilar Joints. J. Mater. Eng. Perform. 21 (2012) 2303-2315.

DOI: 10.1007/s11665-012-0190-7

Google Scholar

[7] J. Zhang, G. Luo, Y. Wang, Q. Shen, L. Zhang, An investigation on diffusion bonding of aluminum and magnesium using a Ni interlayer, Mater. Lett. 83 (2012) 189-191.

DOI: 10.1016/j.matlet.2012.06.014

Google Scholar

[8] G. Mahendran, V. Balasubramanian, T. Senthilvelan, Developing diffusion bonding windows for joining AZ31B magnesium–AA2024 aluminium alloys, Mater. Des. 30 (2009) 1240-1244.

DOI: 10.1016/j.matdes.2008.06.015

Google Scholar

[9] P. Liu, Y.J. Li, H.R. Geng, J. Wang, A study of phase constitution near the interface of Mg/Al vacuum diffusion bonding, Mater. Lett. 59 (2005) 2001-2005.

DOI: 10.1016/j.matlet.2005.02.038

Google Scholar

[10] D.H. Choi, B.W. Ahn, C.Y. Lee, Y.M. Yeon, K. Song, S.B. Jung, Formation of intermetallic compounds in Al and Mg alloy interface during friction stir spot welding, Intermetallics. 19 (2011) 125-130.

DOI: 10.1016/j.intermet.2010.08.030

Google Scholar

[11] L.M. Zhao, Z.D. Zhang, Effect of Zn alloy interlayer on interface microstructure and strength of diffusion-bonded Mg–Al joints, Scr. Mater. 58 (2008) 283-286.

DOI: 10.1016/j.scriptamat.2007.10.006

Google Scholar

[12] J. Zhang, G. Luo, Y. Wang, Y. Xiao, Q. Shen, L. Zhang, Effect of Al thin film and Ni foil interlayer on diffusion bonded Mg-Al dissimilar joints, J. Alloys Compd. 556 (2013) 139-142.

DOI: 10.1016/j.jallcom.2012.12.106

Google Scholar

[13] M.I. Barrena, J.M. Gómez de Salazar, N. Merino, L. Matesanz, Characterization of WC–Co/Ti6Al4V diffusion bonding joints using Ag as interlayer, Mater. Charact. 59 (2008) 1407-1411.

DOI: 10.1016/j.matchar.2007.12.008

Google Scholar

[14] A. Rahman, M.N. Cavalli, Strength and microstructure of diffusion bonded titanium using silver and copper interlayers, Mater. Sci. Eng. A. 527 (2010) 5189-5193.

DOI: 10.1016/j.msea.2010.04.065

Google Scholar

[15] M. Joseph Fernandus, T. Senthilkuma, V. Balasubramanian, Developing Temperature–Time and Pressure–Time diagrams for diffusion bonding AZ80 magnesium and AA6061 aluminium alloys, Mater. Des. 32 (2011) 1651-1656.

DOI: 10.1016/j.matdes.2010.10.011

Google Scholar

[16] Y.J. Jin, T.I. Khan, Effect of bonding time on microstructure and mechanical properties of transient liquid phase bonded magnesium AZ31 alloy, Mater. Des. 38 (2012) 32-37.

DOI: 10.1016/j.matdes.2012.01.039

Google Scholar

[17] Y. Wang, G. Luo, J. Zhang, Q. Shen and L. Zhang, Microstructure and mechanical properties of diffusion-bonded Mg-Al joints using silver film as interlayer, Mater. Sci. Eng. A 559 (2013) 868-874.

DOI: 10.1016/j.msea.2012.09.035

Google Scholar