Investigation of Excitation Mechanism of Cu II Lines under Different Atmospheres

Article Preview

Abstract:

The excitation mechanism of Cu II lines under an Ar and Ne glow discharge plasmas were investigated. Charge transfer collision is the domain excitation mechanism which resulting into the intensive emission of Cu II lines at particular wavelength. Under Ne glow discharge plasma, charge transfer collision and Penning type collision makes great contribution to the violently emission of particular Cu II lines.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

302-309

Citation:

Online since:

June 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Wagatsuma, H. Honda, Comparative studies on the excitation of nickel ionic lines between argon and krypton glow discharge plasmas, Spectrochim. Acta Part B. 60 (2005) 1538-1544.

DOI: 10.1016/j.sab.2005.10.004

Google Scholar

[2] E. Streers, F. Leis, Excitation of the spectra of neutral and singly ionized atoms in the Grimm-type discharge lamp, with and without supplementary microwave excitation, Spectrochim. Acta Part B. 46 (1991) 527-537.

DOI: 10.1016/0584-8547(91)80057-a

Google Scholar

[3] E. Streers, A. Thorne, Application of high-resolution Fourier transform spectrometry to the study of glow discharge sources, part 1. Excitation of iron and chromium spectra in a microwave boosted glow discharge source, Anal. At. Spectrom 8 (1993) 309-315.

DOI: 10.1039/ja9930800309

Google Scholar

[4] T. Naeem, H. Matsuta, K. Wagatsuma, Analysis of scrapped materials by low-pressure laser-induced plasma spectroscopy, ISIJ Int. 42 (2002) 1318-1320.

DOI: 10.2355/isijinternational.42.1318

Google Scholar

[5] K. Wagatsuma, K. Hirokawa, Observation of singly-ionized copper emission lines from a Grimm-type glow discharge plasma with argon—helium gas mixtures in a visible wavelength region, Spectrochim. Acta Part B 48 (1993) 1039-1044.

DOI: 10.1016/s0584-8547(05)80009-6

Google Scholar

[6] Y. Ushirozawa, K. Wagatsuma, Excitation Mechanisms of Copper Ionic and Atomic Lines Emitted from a Low Pressure Argon Laser‐Induced Plasma. Spectrosc. Lett. 38 (2005) 539-555.

DOI: 10.1081/sl-200062947

Google Scholar

[7] K. Wagatsuma, Excitation Mechanism of Silver Ionic Lines Through Collision with Metastabel Atoms of Plasma Gas in a Glow- Discharge plasma. Spectrosc. Lett. 44 (2011) 151-157.

DOI: 10.1080/00387011003690161

Google Scholar

[8] K. Wagatsuma, K. Hirokawa, Spectrometric studies on excitation of nickel ionic lines between argon and krypton glow discharge plasmas, Spectrochim. Acta Part B 46 (1991) 269-281.

DOI: 10.1016/0584-8547(91)80028-2

Google Scholar

[9] K. Wagatsuma, K. Hirokawa, Effects of helium addition to argon glow discharge plasma on emission lines of sputtered particles, Anal. Chem. 60 (1988) 702-705.

DOI: 10.1021/ac00158a022

Google Scholar

[10] K. Wagatsuma, Excitation Mechanism of Silver Ionic Lines Through Collision with Metastabel Atoms of Plasma Gas in a Glow- Discharge plasma. Spectrosc. Lett. 44 (2011) 151-157.

DOI: 10.1080/00387011003690161

Google Scholar

[11] L. Zhang, S. Kashiwakura, K. Wagatsuma, Boltzmann statistical consideration on the excitation mechanism of iron atomic lines emitted from glow discharge plasmas, Spectrochim. Acta Part B, 66 (2011) 789-792.

DOI: 10.1016/j.sab.2011.10.002

Google Scholar

[12] L. Zhang, S. Kashiwakura, K. Wagatsuma, Deviation from Boltzmann Distribution in Excited Energy Levels of Singly ionized Iron in an Argon Glow Discharge Plasma for Atomic Emission, Spectrochim. Acta Part B 67 (2011) 24-31.

DOI: 10.1016/j.sab.2011.12.005

Google Scholar

[13] C.E. Moore, Atomic Energy Level, Washington, DC, 1952.

Google Scholar