Synthesis of S and N Co-Doped Mesoporous Titanium Oxideby Anodization Processs

Article Preview

Abstract:

Uni-directionally arranged mesoporous titanium oxide powders were prepared for titanium sheet through electrochemical anodization, one-step anodization with mixture of HNO3 and H2SO4 or two-steps anodization with HNO3 after H2SO4. The characterization of novel titanium oxide was carried out by XRD, XPS, SEM and TEM. The doping of S and N was confirmed with XPS evaluations during the anodization process in mixture of HNO3 and H2SO4. Furthermore, the S and N co-doped titanium oxide possessed the unique mesoporous structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-76

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura, Highly ordered nanochannel-array architecture in anodic alumina, Appl. Phys. Lett. 71 (1997) 2770.

DOI: 10.1063/1.120128

Google Scholar

[2] A. Aladjem, Anodic oxidation of titanium and its alloys, J. Mater. Sci. 8 (1973) 688–704.

DOI: 10.1007/bf00561225

Google Scholar

[3] C. Liang, K. Terabe, T. Hasegawa, M. Aono, Resistance switching in anodic oxidized amorphous TiO2 films, Appl. Phys. Express 1 (2008) 064002.

DOI: 10.1143/apex.1.064002

Google Scholar

[4] K. Konishi, T. Kubo, A. Nakahira, Characterization and some properties of TiO2 on Ti surface by anodization in acid solution, pp.390-394, Water, Steam and Aqueous Solutions for Electric Power, Advances in Sci. and Tech., Maruzen, 2005.

Google Scholar

[5] A. Nakahira, K. Konishi, K. Yokota, T. Honma, H. Aritani, K. Tanaka, Synthesis and characterization of TiO2 doped with P ions by anodic oxidation of titanium in acid solution, J. Ceram. Soc. Japan 114 (2006) 46–50.

DOI: 10.2109/jcersj.114.46

Google Scholar

[6] A. Nakahira, K. Yokota, T. Kubo, Preparation of Ti with nanoholed TiO2 layer by anodic oxidation for medical applications, Advances in Technology of Materials and Materials Processing Journal (ATM) 9 (2007) 41–44.

Google Scholar

[7] A. Nakahira, K. Yokota, T. Kubo, M. Takahashi, Synthesis and Characterization of TiO2 doped with S ions by anodic oxidation of titanium in acid solution, Chem. Lett. 11 (2007) 1318–1319.

DOI: 10.1246/cl.2007.1318

Google Scholar

[8] A. Nakahira, K. Yokota, S. Kato, N. Hirota, H. Okada, H. Onodera, Synthesis and Characterization of Fe Nanofiber using Alumina with Nanoholes by Anodic Oxidation, J. Ceram. Soc. Japan 115 (2007) 905–908.

DOI: 10.2109/jcersj2.115.905

Google Scholar

[9] A. Nakahira, K. Konishi, K. Yokota, T. Kubo, Y. Sasaki, Y. Ikuhara, Synthesis of Novel Structured TiO2 with Mesopores by Anodic Oxidation, Inorg. Chem. 49 (2010) 47–51.

DOI: 10.1021/ic9010136

Google Scholar

[10] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269–271.

DOI: 10.1126/science.1061051

Google Scholar

[11] N.C. Saha, H.C. Tomkins, Titanium nitride oxidation chemistry: an X-ray photoelectron spectroscopy study, J. Appl. Phys. 72 (1992) 3072–3079.

DOI: 10.1063/1.351465

Google Scholar

[12] X. Chen, C. Burda, Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles, J. Phys. Chem. B 108 (2004) 15446–15449.

DOI: 10.1021/jp0469160

Google Scholar

[13] H. Tokudome, M. Miyauchi, N-doped TiO2 nanotube with visible light activity, Chem. Lett. 33 (2004) 1108–1109.

DOI: 10.1246/cl.2004.1108

Google Scholar

[14] T Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, TiO2 preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Applied Catalysis A General 265 (2004) 115–121.

DOI: 10.1016/j.apcata.2004.01.007

Google Scholar

[15] Y.W. Sakai, K. Obata, K. Hashimoto, H. Irie, Enhancement of visible light-induced hydrophilicity on nitrogen and sulfur-codoped TiO2 thin films, Vacuum 83 (2009) 683–687.

DOI: 10.1016/j.vacuum.2008.04.022

Google Scholar