Interlayer Surface Modification of Layered Perovskite HLaNb2O7·xH2O with Diol Compounds Possessing Ethylene Oxide Chains

Article Preview

Abstract:

Grafting reactions between an n-decoxy derivative of ion-exchangeable layered perovskite HLaNb2O7·xH2O and polyethylene glycols (PEGs) with various molecular masses were investigated. X-ray diffraction analysis showed that a reflection corresponding to the interlayer distance of the n-decoxy derivative of HLaNb2O7·xH2O (2.73 nm) disappeared and that new diffraction lines ascribable to smaller interlayer distances, which increased with increases in the molecular mass of PEGs, appeared. The solid-state 13C CP/MAS NMR spectra of the products indicated that ethylene oxide chains were covalently bound to the interlayer surface of HLaNb2O7xH2O. The signal assignable the carbons bound to OH groups suggests that the grafting reactions for the formation of Nb-O-C bonds typically involve one of the terminal OH groups in PEGs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-86

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, Y. Niidome, J. Contr. Release 114 (2006) 343-347.

DOI: 10.1016/j.jconrel.2006.06.017

Google Scholar

[2] M.D. Butterworth, L. Illum, S.S. Davis, Colloid Surface Physicochem. Eng. Aspect 179 (2001) 93-102.

Google Scholar

[3] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Chem. Rev. 108 (2008) 2064-2110.

DOI: 10.1021/cr068445e

Google Scholar

[4] R. Gref, M. Luck, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk, R.H. Muller, Colloids Surf. B. Biointerfaces 18 (2000) 301-313.

DOI: 10.1016/s0927-7765(99)00156-3

Google Scholar

[5] M. Tobio, A. Sanchez, A. Vila, I. Soriano, C. Evora, J.L. Vila-Jato, M.J. Alonso, Colloids Surf. B. Biointerfaces 18 (2000) 315-323.

DOI: 10.1016/s0927-7765(99)00157-5

Google Scholar

[6] N. Nitin, L.E.W. LaConte, O. Zurkiya, X. Hu, G. Bao, J. Biol. Inorg. Chem. 9 (2004) 706-712.

Google Scholar

[7] C. Sun, J. Lee, M. Zhang, Adv. Drug Deliv. Rev. 60 (2008) 1252-1265.

Google Scholar

[8] P. Aranda, E. Ruizhitzky, Chem. Mater. 4 (1992) 1395-1403.

Google Scholar

[9] N. Sarier, E. Onder, Thermochim. Acta 510 (2010) 113-121.

Google Scholar

[10] J.J. Tunney, C. Detellier, Chem. Mater. 8 (1996) 927-935.

Google Scholar

[11] J.E. Gardolinski, L.C.M. Carrera, M.P. Cantao, F. Wypych, J. Mater. Sci. 35 (2000) 3113-3119.

Google Scholar

[12] M.J. Binette, C. Detellier, Can. J. Chem. Rev. Can. Chim. 80 (2002) 1708-1714.

Google Scholar

[13] U. Costantino, F. Marmottini, Mater. Chem. Phys. 35 (1993) 193-198.

Google Scholar

[14] E. Ruizhitzky, R. Jimenez, B. Casal, V. Manriquez, A.S. Ana, G. Gonzalez, Adv. Mater. 5 (1993) 738-741.

Google Scholar

[15] H.L. Tsai, J.L. Schindler, C.R. Kannewurf, M.G. Kanatzidis, Chem. Mater. 9 (1997) 875-+.

Google Scholar

[16] L. Hernan, J. Morales, J. Santos, J. Solid State Chem. 141 (1998) 323-329.

Google Scholar

[17] K. Melanova, L. Benes, V. Zima, R. Vahalova, M. Kilian, Chem. Mater. 11 (1999) 2173-2178.

Google Scholar

[18] Y.J. Liu, J.L. Schindler, D.C. DeGroot, C.R. Kannewurf, W. Hirpo, M.G. Kanatzidis, Chem. Mater. 8 (1996) 525-534.

Google Scholar

[19] C.V.S. Reddy, J. Wei, Z. Quan-Yao, D. Zhi-Rong, C. Wen, S. Mho, R.R. Kalluru, J. Power Sourc. 166 (2007) 244-249.

DOI: 10.1016/j.jpowsour.2007.01.010

Google Scholar

[20] Y. Matsuo, K. Tahara, Y. Sugie, Carbon 35 (1997) 113-120.

Google Scholar

[21] F. Barroso-Bujans, F. Fernandez-Alonso, S. Cerveny, S. Arrese-Igor, A. Alegria, J. Colmenero, Macromolecules 45 (2012) 3137-3144.

DOI: 10.1021/ma202655f

Google Scholar

[22] J.P. Lemmon, M.M. Lerner, Solid State Comm. 94 (1995) 533-537.

Google Scholar

[23] L. Wang, M. Rocci-Lane, P. Brazis, C.R. Kannewurf, Y.I. Kim, W. Lee, J.H. Choy, M.G. Kanatzidis, J. Am. Chem. Soc. 122 (2000) 6629-6640.

DOI: 10.1021/ja9944610

Google Scholar

[24] N. Sukpirom, M.M. Lerner, Chem. Mater. 13 (2001) 2179-2185.

Google Scholar

[25] G.A. Bubniak, W.H. Schreiner, N. Mattoso, F. Wypych, Langmuir 18 (2002) 5967-5970.

Google Scholar

[26] S. Takahashi, T. Nakato, S. Hayashi, Y. Sugahara, K. Kuroda, Inorg. Chem. 34 (1995) 5065-5069.

Google Scholar

[27] H. Suzuki, K. Notsu, Y. Takeda, W. Sugimoto, Y. Sugahara, Chem. Mater. 15 (2003) 636-641.

Google Scholar

[28] J. Gopalakrishnan, V. Bhat, B. Raveau, Mater. Res. Bull. 22 (1987) 413-417.

Google Scholar