Consolidation of Titanium Carbide with Zirconium Carbide by Spark Plasma Sintering

Article Preview

Abstract:

Titanium carbide (TiC) was consolidated with 20 mol% zirconium carbide (ZrC) by spark plasma sintering in the temperature range of 1773–2473 K, and the phase formation, microstructure, relative density and mechanical properties were investigated. The composite consisted of Ti-rich (Ti, Zr)C and Zr-rich (Zr, Ti)C solid solutions at 1773–2373 K, and was single-phase (Ti, Zr)C at 2473 K. The relative density of the composite was over 98% above 2073 K. The composite prepared at 2273 K exhibited the maximum HV of 29.7 GPa with the KIC of 3.76 MPa m1/2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

52-55

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Koc, J.S. Folmer, Synthesis of submicrometer titanium carbide powders, J. Am. Ceram. Soc. 80 (1997) 952-956.

DOI: 10.1111/j.1151-2916.1997.tb02926.x

Google Scholar

[2] L.X. Cheng, Z.P. Xie, G.W. Liu, W.J. Xue, W. Liu, Densification and mechanical properties of TiC by SPS-effects of holding time, sintering temperature and pressure condition, J. Eur. Ceram. Soc. 32 (2012) 3399-3406.

DOI: 10.1016/j.jeurceramsoc.2012.04.017

Google Scholar

[3] H. Endo, M. Uedi, H. Kubo, Hot pressing of SiC-TiC composites. J. Mater. Sci. 25 (1990) 2503-2506.

DOI: 10.1007/bf00638050

Google Scholar

[4] J.Y. Ko, S.Y. Park, D.Y. Soon, S.J.L. Kang, Migration of intergranular liquid films and formation of core-shell grains in sintered TiC-Ni bonded to WC-Ni, J. Am. Ceram. Soc. 87 (2004) 2262-2267.

DOI: 10.1111/j.1151-2916.2004.tb07502.x

Google Scholar

[5] D.I. Chun, D.Y. Kim, E.Y. Eun, Microstructure evolution during the sintering of TiC-Mo-Ni cermets, J. Am. Ceram. Soc. 76 (1993) 2049-2052.

DOI: 10.1111/j.1151-2916.1993.tb08331.x

Google Scholar

[6] X.B. Zhang, N. Liu, Effects of ZrC on microstructure, mechanical properties and thermal shock resistance of TiC-ZrC-Co-Ni cermets, Mater. Sci. Eng. A 561 (2013) 270-276.

DOI: 10.1016/j.msea.2012.11.003

Google Scholar

[7] X.B. Zhang, N. Liu, C.L. Rong, Microstructure and fracture toughness of TiC-ZrC-WC-Mo-Ni cermets, Inter. J. Refrac. Met. Hard Mater. 26 (2008) 346-356.

DOI: 10.1016/j.ijrmhm.2007.08.008

Google Scholar

[8] W.T. Kwon, J. S. Park, S.W. Kim, S. Kang, Effect of WC and group IV carbides on the cutting performance of Ti(C,N) cermet tools. Inter. J. Mach. Tools. Manu. 44 (2004) 341-346.

DOI: 10.1016/j.ijmachtools.2003.10.023

Google Scholar

[9] W.T. Kwon, J. S. Park, S. Kang, Effect of group IV elements on the cutting characteristics of Ti(C,N) cermet tools and reliability analysis. J. Mater. Proc. Tech. 166 (2005) 9-14.

DOI: 10.1016/j.jmatprotec.2004.06.009

Google Scholar

[10] D.L. Yung, L. Kollo, I. Hussainova, A. Zikin, Reactive sintering of ZrC-TiC composites, Key Eng. Mater. 527 (2013) 20-25.

DOI: 10.4028/www.scientific.net/kem.527.20

Google Scholar

[11] J.F. Shackelford, W. Alexander, CRC Materials Science and Engineering Handbook, third ed., CRC Press, London, 2000.

Google Scholar

[12] G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc. 64(9) (1981) 533-538.

DOI: 10.1111/j.1151-2916.1981.tb10320.x

Google Scholar