[1]
F. Guillard, A. Allemand, J.D. Lulewicz, J. Galy, Densification of SiC by SPS-effects of time, temperature and pressure, J. Eur. Ceram. Soc. 27 (2007) 2725-2728.
DOI: 10.1016/j.jeurceramsoc.2006.10.005
Google Scholar
[2]
S. Baud, F. Thevenot, Microstructures and mechanical properties of liquid-phase sintered seeded silicon carbide, Mater. Chem. Phys. 67 (2001) 165-174.
DOI: 10.1016/s0254-0584(00)00435-1
Google Scholar
[3]
S. Prochazka, Ceramics for high-performance applications, in: Proceedings of the Second Army Materials Technology Conference, Army Materials and Mechanics Research Center (US) Edition, Hyannis, 1974, pp.239-252.
Google Scholar
[4]
M. Ohyanagi, T. Yamamoto, H. Kitaura, Y. Kodera, T. Ishii, Z.A. Munir, Consolidation of nanostructured SiC with disorder–order transformation, Scripta Mater. 50 (2004) 111-114.
DOI: 10.1016/j.scriptamat.2003.09.027
Google Scholar
[5]
J.J. Cao, W.J. MoberlyChan, L.C. DeJonghe, C. J. Gilbert, R.O. Ritchie, In situ toughened silicon carbide with Al-B-C additions, J. Am. Ceram. Soc. 79 (1996) 461-469.
DOI: 10.1111/j.1151-2916.1996.tb08145.x
Google Scholar
[6]
J.F. Zhang, R. Tu, T. Goto, Fabrication of transparent SiO2 glass by pressureless sintering and spark plasma sintering, Ceram. Int. Vol. 38 (2012) 2673-2678.
DOI: 10.1016/j.ceramint.2011.11.034
Google Scholar
[7]
H. Ye, G. Rixecker, F. Aldinger, Liquid phase sintered SiC with SiO2 additive, Ceramics- Processing, Reliability, Tribology and Wear 12 (2006) 173-177.
DOI: 10.1002/3527607293.ch29
Google Scholar
[8]
D.R. Clarke, On the equilibrium thickness of intergranular glass phases in ceramic materials, J. Am. Ceram. Soc. 70 (1987) 15-22.
Google Scholar
[9]
N.S. Jacobson, K.N. Lee, D.S. Fox, Reactions of silicon carbide and silicon(IV) oxide at elevated temperatures, J. Am. Ceram. Soc. 75 (1992) 1603-1611.
DOI: 10.1111/j.1151-2916.1992.tb04232.x
Google Scholar
[10]
A. Boulle, Z. Oudjedi, R. Guinebretiere, B. Soulestin, A. Dauger, Ceramic nanocomposites obtained by sol-gel coating of submicron powders, Acta. Mater. 49 (2001) 811-816.
DOI: 10.1016/s1359-6454(00)00366-9
Google Scholar
[11]
C. Vahlas, B. Caussat, P. Serp, G.N. Angelopoulos, Principles and applications of CVD powder technology, Mater. Sci. Eng. R 53 (2006) 1-72.
DOI: 10.1016/j.mser.2006.05.001
Google Scholar
[12]
H. Itoh, N. Watanabe, S. Naka, Preparation of titanium nitride coated powders by rotary powder bed chemical vapour deposition, J. Mater. Sci. 23 (1988) 43-47.
DOI: 10.1007/bf01174032
Google Scholar
[13]
H. Itoh, K. Hattori, S. Naka, Rotary powder bed chemical vapour deposition of titanium nitride on spherical iron powder, J. Mater. Sci. 24 (1989) 3643-3646.
DOI: 10.1007/bf02385751
Google Scholar
[14]
J.F. Zhang, R. Tu, T. Goto, Preparation of Ni-precipitated hBN powder by rotary chemical vapor deposition and its consolidation by spark plasma sintering, J. Alloys Compd. 502 (2010) 371-375.
DOI: 10.1016/j.jallcom.2010.04.170
Google Scholar
[15]
Z.H. He, R. Tu, H. Katsui, T. Goto, Synthesis of SiC/SiO2 core-shell powder by rotary chemical vapor deposition and its consolidation by spark plasma sintering, Ceram. Int. 39 (2013) 2605-2610.
DOI: 10.1016/j.ceramint.2012.09.025
Google Scholar
[16]
H. Katsuia, Z.H. He, T. Goto, Silicon carbide coating on diamond powder by rotary chemical vapor deposition, Key Eng. Mater. 508 (2012) 65-68.
DOI: 10.4028/www.scientific.net/kem.508.65
Google Scholar
[17]
J.F. Zhang, R. Tu, T. Goto, Densification, microstructure and mechanical properties of SiO2-cBN composites by spark plasma sintering, Ceram. Int. 38 (2012) 351-356.
DOI: 10.1016/j.ceramint.2011.07.013
Google Scholar