Fabrication of Nitride Ceramics by Electric Current Assisted Sintering

Article Preview

Abstract:

Electric current assisted sintering (ECAS) has been used for sintering of nitride ceramic powders. It was mainly used for fabrication of fine-grained silicon nitride ceramics with high plasticity at high-temperatures, because high heating rate of ECAS was effective for densification without grain growth. Recent trend of silicon nitride ceramics sintered by ECAS are for wear resistance, corrosion resistance, or high toughness. Application of silicon nitride ceramics is expanding and the ECAS is helpful for improving the properties. The ECAS is used for sintering of aluminum nitride ceramics, recently. Aluminum nitride powder could be densified without sintering additive by ECAS, but some kinds of sintering additives are effective for densification and improvement of thermal conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-22

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Grasso, Y. Sakka, G. Maizza, Sci. Tech. Adv. Mater. 10 (2009) 053001.

Google Scholar

[2] R. Orru`, R. Licheri, A. M. Locci, A. Cincotti, G. Cao, Mater. Sci. Eng. R 63, (2009) 127-287.

Google Scholar

[3] J.A. Schneider, A.K. Mukherjee, K. Yamazaki, K. Shoda, Mater. Lett. 25 (1995) 101-104.

Google Scholar

[4] T. Nishimura, M. Mitomo, H. Hirotsuru, M. Kawahara, J. Mater. Sci. Lett. 14 (1995) 1046-1047.

Google Scholar

[5] J.A. Schneider, S.H. Risbud, A.K. Mukherjee, J. Mater. Res. 11 (1996) 358-362.

Google Scholar

[6] J.A. Schneider, A. K. Mukherjee, J. Am. Ceram. Soc. 82 (1999) 761-764.

Google Scholar

[7] T. Nishimura, M. Mitomo, K.-H. Kim, N. Hirosaki, H. Tanaka, K.-B.Shim, J. Ceram. Process. Res. 3 (2002) 261-264.

Google Scholar

[8] X. Xu, T. Nishimura, N. Hirosaki, R. Xie, Y. Zhu, Y. Yamamoto, H. Tanaka, J. Am. Ceram. Soc. 88 (2005) 934-937.

Google Scholar

[9] X. Xu, T. Nishimura, N. Hirosaki, R. Xie, Y. Yamamoto, H. Tanaka, Key Eng. Mater. 317-318 (2006) 629-632.

DOI: 10.4028/www.scientific.net/kem.317-318.629

Google Scholar

[10] X. Xu, T. Nishimura, N. Hirosaki, R. Xie, Y. Yamamoto, H. Tanaka, Nanotechnology 16 (2005)1569-1573.

Google Scholar

[11] X. Xu, T. Nishimura, N. Hirosaki, R. Xie, Y. Yamamoto, H. Tanaka, Acta Mater. 54 (2006) 255-262.

Google Scholar

[12] T. Nishimura, X. Xu, K. Kimoto, N. Hirosaki, H. Tanaka, Sci. Tech. Adv. Mater. 8 (2007) 635-643.

Google Scholar

[13] M. Yoshimura, O. Komura, A. Yamakawa, Scr. Mater. 44 (2001) 1517-1521.

Google Scholar

[14] J. Tatami, M. Iguchi, M. Hotta, C. Zhang, K. Komeya, T. Meguro, M. Omori, T. Hirai, M. Brito, Y.-B. Cheng, Key Eng. Mater. 237 (2003) 105-110.

DOI: 10.4028/www.scientific.net/kem.237.105

Google Scholar

[15] D. Hiratuska, J. Tatami, T. Meguro, K. Komeya, I. Hayashi, J.-F. Yang, M. Omori, Key Eng. Mater. 317-318 (2006) 633-636.

DOI: 10.4028/www.scientific.net/kem.317-318.633

Google Scholar

[16] R.L. Fu, S. Agathopoulos, Adv. Appl. Ceram. 108 (2009) 358-362.

Google Scholar

[17] C.-H. Lee, H.H. Lu, C.-A. Wang, K. Nayak. J.-L. Hwang, J. Am. Ceram. Soc. 94 (2011) 1182-1190.

Google Scholar

[18] K. A. Khor, K.H. Cheng, L.G.Yu, F. Boey, Mater. Sci. Eng. A 347 (2003), 300-305.

Google Scholar

[19] K.A. Kho, L.G. Yu, Y. Murakoshi, J. Eur. Ceram. Soc. 25 (2005) 1057-1065.

Google Scholar

[20] K.-H. Kim, J.-S. Park, J.-P. Ahn, J.-H. Chae, B.-H. Lee, K.B. Shim, J. Ceram. Process. Res. 10 (2009) 109-112.

Google Scholar

[21] M.J. Li, L.M. Zhang, Q. Shen, T. Li, M.Q. Yu, J. Mater. Sci. 41 (2006) 7934-7938.

Google Scholar

[22] Y. Kurokawa, K. Utsumi, H. Takamizawa, J. Am. Ceram. Soc. 71 (1988) 588-594.

Google Scholar