[1]
P.Y. Dai, Y.Z. Wang, G.L. Liu, B. Wang, Y.G. Shi, J.F. Yang, G.J. Qiao, H.J. Wang, Fabrication of highly dense pure SiC ceramics via the HTPVT method, Acta Mater. 59 (2011) 6257-6263.
DOI: 10.1016/j.actamat.2011.06.035
Google Scholar
[2]
X. Zhao, X. He, Y. Sun, J. Yi, P. Xiao, Superhard and tougher SiC/Diamond-like-carbon composite films produced by electron beam physical vapor deposition, Acta Mater. 57 (2009) 893-902.
DOI: 10.1016/j.actamat.2008.10.031
Google Scholar
[3]
C. R. Eddy Jr., D. K. Gaskill, Silicon carbide as a platform for power electronics, Science. 324 (2009) 1398-1400.
DOI: 10.1126/science.1168704
Google Scholar
[4]
W. C. Lien, N. Ferralis, C. Carraro, Growth of epitaxial 3C-SiC films on Si(100) via low temperature SiC buffer layer, Cryst. Growth Des. 10 (2009) 36-39.
DOI: 10.1021/cg901189k
Google Scholar
[5]
A. Ellison, J. Zhang, A. Henry, E. Janzen, Epitaxial growth of SiC in a chimney CVD reactor, J. Cryst. Growth. 235 (2002) 225-239.
DOI: 10.1016/s0022-0248(01)02129-7
Google Scholar
[6]
G. Aylward, T. Findlay, SI Chemical Data, 4th ed.; John Wiley & Sons: Australia, (1998) p.115.
Google Scholar
[7]
F. Liao, S. Park, J.M. Larson, M.R. Zachariah, S.L. Girshick, High-rate chemical vapor deposition of nanocrystalline silicon carbide films by radio frequency thermal plasma, Mater. Lett. 57 (2003) 1982-1986.
DOI: 10.1016/s0167-577x(02)01116-3
Google Scholar
[8]
S.W. Huh, H.J. Chung, S. Nigam, A.Y. Polyakov, Q. Li, M. Skowronski, E.R. Glaser, W.E. Carlos, B.V. Shanabrook, M.A. Fanton, and N. B. Smirnov, J. Appl. Phys. 99 (2006) 013508.
DOI: 10.1063/1.2150593
Google Scholar
[9]
B.J. Choi, S.H. Jeun, D.R. Kim, The effects of C3H8 on the chemical vapor deposition of silicon carbide in CH3SiCl3+H2 system, J. Eur. Ceram. Soc. 9 (1992) 357-363.
DOI: 10.1016/0955-2219(92)90094-t
Google Scholar
[10]
F. Liao, S. Park, J.M. Larson, M.R Zachariah, S.L. Girshick, High-rate chemical vapor deposition of nanocrystalline silicon carbide films by radio frequency thermal plasma, Mater. Lett. 57 (2003) 1982-1986.
DOI: 10.1016/s0167-577x(02)01116-3
Google Scholar
[11]
H.S. Kim, H.S. Choi, The reactant depletion effect on chemically vapor deposited SiC films with pressure and gas ambient, Thin Solid Films. 312 (1998) 195-201.
DOI: 10.1016/s0040-6090(97)00744-x
Google Scholar
[12]
C.F. Wang, D.S. Tsai, Low pressure chemical vapor deposition of silicon carbide from dichorosilane and acetylene, Mater. Chem. Phys. 63 (2000) 196-201.
DOI: 10.1016/s0254-0584(99)00207-2
Google Scholar
[13]
M. T. Clavaguera-Mora, J. Rodriguez-Viejo, Z. El Felk, E. Hutros, S. Berberich, J. Stoemenos, N. Clavaguera, Growth of SiC films obtained by LPCVD, Diam. Relat. Mater. 6 (1997) 1306-1310.
DOI: 10.1016/s0925-9635(97)00084-8
Google Scholar
[14]
V. Radmilovic, U. Dahmen, D. Gao, C.R. Stoldt, C. Carraro, R. Maboudian Formation of <111> fiber texture in β-SiC films deposition on Si(100) substrates, Diam. Relat. Mater. 16 (2007) 74-80.
DOI: 10.1016/j.diamond.2006.03.017
Google Scholar
[15]
M.B.J. Wijesundara, G. Valente, W.R. Ashurst, R.T. Howe, A.P. Pisano, C. Carraro, R. Maboudian, Single-source chemical vapor deposition of 3C-SiC films in a LPCVD reactor, J. Electrochem. Soc. 151 (2004) C210-C214.
DOI: 10.1149/1.1646141
Google Scholar
[16]
X.A. Fu, J.L. Dunning, C A. Zorman, M. Mehregany, Measurement of residual stress and elastic modulus of polycrystalline 3C-SiC films deposited by low-pressure chemical vapor deposition, Thin Solid Films. 492 (2005) 195-202.
DOI: 10.1016/j.tsf.2005.07.236
Google Scholar
[17]
H.T. Chiu, J.S. Hsu, Low pressure chemical vapor deposition of silicon carbide thin films from hexamthydisilane, Thin Solid Films. 252 (1994) 13-18.
DOI: 10.1016/0040-6090(94)90818-4
Google Scholar
[18]
M.G. So, J.S. Chun. Growth and structure of chemical vapor deposited silicon carbide form methyltrichlorosilane and hydrogen in the temperature range of 1100 to 1400 °C, J. Vac. Sci. Technol. A. 6 (1988) 5-8.
DOI: 10.1016/0042-207x(89)90903-2
Google Scholar
[19]
F. Loumagne, F. Langlais, R. Naslain, S. Schamm, D. Dorignac, J. Sevely. Physicochemical properties of SiC-based ceramics deposited by low pressure chemical vapor deposition from CH3SiCl3-H2, Thin solid Films. 254 (1995) 75-82.
DOI: 10.1016/0040-6090(94)06237-f
Google Scholar
[20]
F. Loumagne, F. Langlais, R. Naslain. Experimental kinetic study of the chemical vapour deposition of SiC-based ceramics from CH3SiCl3/H2 gas precursor, J. Cryst. Growth. 155 (1995) 198-204.
DOI: 10.1016/0022-0248(95)00180-8
Google Scholar
[21]
F. Loumagne, F. Langlais, R. Naslain. Reactional mechanisms of the chemical vapour deposition of SiC-based ceramics from CH3SiCl3/H2 gas precursor, J. Cryst. Growth. 155 (1995) 205-213.
DOI: 10.1016/0022-0248(95)00181-6
Google Scholar
[22]
K. Fujie, A. Ito, R. Tu, T. Goto, Laser chemical vapor deposition of SiC films with CO2 laser, J. Alloy Compd. 502 (2010) 238-242.
DOI: 10.1016/j.jallcom.2010.04.154
Google Scholar
[23]
K. Takahashi, S. Nishio, J. Saraie. Low-temperature growth of 3C-SiC on Si substrate by chemical vapor deposition using hexamethlydisilane as a source material, J. Electrochem. Soc. 139 (1992) 3565-3571.
DOI: 10.1149/1.2069122
Google Scholar
[24]
H.E. Cheng, T.T. Lin, M.H. Hon, Multiple twins induced <110> preferred growth in TiN and SiC films prepared by CVD, Scripta Mater. 35 (1996) 113-116.
DOI: 10.1016/1359-6462(96)00091-7
Google Scholar