Fabrication of Hollow Silica-Alumina Composite Spheres Using L(+)-Arginine and their Catalytic Performance for Hydrolytic Dehydrogenation of Ammonia Borane

Article Preview

Abstract:

The present study reports a facile and effective approach for fabrication of hollow silica-alumina composite spheres. In this approach, silica-alumina composite walls were coated on polystyrene template by the sol-gel method using L(+)-arginine as a promoter for the reaction followed by calcination procedure. Using L(+)-arginine as a promoter of coating process, homogeneous hollow silica-alumina composite spheres are obtained and the wall thickness is larger than that of the hollow spheres prepared with ammonia. The hollow spheres shows high activity for hydrolytic dehydrogenation of ammonia borane compared with spherical silica-alumina composite particles without hollow structure, the hollow spheres prepared with ammonia, and conventional H-BEA zeolite. The results indicate that hollow structure plays important role to show high activity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

170-173

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Turner, G. Sverdrup, K. Mann, P.G. Maness, V. Kroposki, M. Ghirardi, Int. J. Energy Res. 32 (2008) 379-407.

DOI: 10.1002/er.1372

Google Scholar

[2] A.W.C.V. Berg, C.O. Arean, Chem. Commun. 27 (2008) 668-681.

Google Scholar

[3] M. Chandra, Q. Xu, J. Power Sources 159 (2006) 855-860.

Google Scholar

[4] N. Toyama, T. Umegaki, Q. Xu, Y. Kojima, J. Jpn. Inst. Ener., submitted.

Google Scholar

[5] M. Chandra, Q. Xu, J. Power Sources 168 (2007) 135-142.

Google Scholar

[6] T. Umegaki, J.M. Yan, Z.B. Zhang, H. Shioyama, N. Kuriyama, Q. Xu, J. Power Sources 191 (2009) 209-216.

Google Scholar

[7] Ö. Metin, S. Özkar, Int. J. Hydrogen Energy 36 (2011) 1424-1432.

Google Scholar

[8] T. Umegaki, C. Takei, Q. Xu, Y. Kojima, Int. J. Hydrogen Energy 38 (2013) 1397-1404.

Google Scholar

[9] T. Umegaki, C. Takei, Y. Watanuki, Q. Xu, Y. Kojima, J. Mol. Catal. A: Chem. 371 (2013) 1-7.

Google Scholar

[10] A. Imhof, Langmuir 17 (2001) 3579-3585.

Google Scholar

[11] Z. Deng, M. Chen, S. Zhou, B. You, L. Wu, Langmuir 22(14) (2006) 6403-6407.

Google Scholar

[12] F. Caruso, R.A. Caruso, H. Möhwald, Science 282 (1998) 1111-1114.

Google Scholar

[13] H.W. Duan, D.Y. Wang, N.S. Sobal, M. Giersig, D.G. Kurth, H. Mohwald, Nano Lett. 5 (2005) 949-952.

Google Scholar

[14] T. Nakashima, N. Kimizuka, J. Am. Chem. Soc. 125 (2003) 6386-6387.

Google Scholar

[15] W.J. Li, M.O. Coppens, Chem. Mater. 17 (2005) 2241-2246.

Google Scholar

[16] T. Yokoi, Y. Sakamoto, O. Terasaki, Y. Kubota, T. Okubo, T. Tatsumi, J. Am. Chem. Soc. 128 (2006) 13664-13665.

DOI: 10.1021/ja065071y

Google Scholar