Fabrication of Hollow Silica-Alumina Composite Spheres Using L(+)-Arginine and their Catalytic Performance for Hydrolytic Dehydrogenation of Ammonia Borane

Abstract:

Article Preview

The present study reports a facile and effective approach for fabrication of hollow silica-alumina composite spheres. In this approach, silica-alumina composite walls were coated on polystyrene template by the sol-gel method using L(+)-arginine as a promoter for the reaction followed by calcination procedure. Using L(+)-arginine as a promoter of coating process, homogeneous hollow silica-alumina composite spheres are obtained and the wall thickness is larger than that of the hollow spheres prepared with ammonia. The hollow spheres shows high activity for hydrolytic dehydrogenation of ammonia borane compared with spherical silica-alumina composite particles without hollow structure, the hollow spheres prepared with ammonia, and conventional H-BEA zeolite. The results indicate that hollow structure plays important role to show high activity.

Info:

Periodical:

Edited by:

Kenjiro Fujimoto, Shigehiro Kawamori, Stéphane Cordier and Franck Tessier

Pages:

170-173

DOI:

10.4028/www.scientific.net/KEM.617.170

Citation:

T. Umegaki et al., "Fabrication of Hollow Silica-Alumina Composite Spheres Using L(+)-Arginine and their Catalytic Performance for Hydrolytic Dehydrogenation of Ammonia Borane", Key Engineering Materials, Vol. 617, pp. 170-173, 2014

Online since:

June 2014

Export:

Price:

$35.00

* - Corresponding Author

[1] J. Turner, G. Sverdrup, K. Mann, P.G. Maness, V. Kroposki, M. Ghirardi, Int. J. Energy Res. 32 (2008) 379-407.

[2] A.W.C.V. Berg, C.O. Arean, Chem. Commun. 27 (2008) 668-681.

[3] M. Chandra, Q. Xu, J. Power Sources 159 (2006) 855-860.

[4] N. Toyama, T. Umegaki, Q. Xu, Y. Kojima, J. Jpn. Inst. Ener., submitted.

[5] M. Chandra, Q. Xu, J. Power Sources 168 (2007) 135-142.

[6] T. Umegaki, J.M. Yan, Z.B. Zhang, H. Shioyama, N. Kuriyama, Q. Xu, J. Power Sources 191 (2009) 209-216.

[7] Ö. Metin, S. Özkar, Int. J. Hydrogen Energy 36 (2011) 1424-1432.

[8] T. Umegaki, C. Takei, Q. Xu, Y. Kojima, Int. J. Hydrogen Energy 38 (2013) 1397-1404.

[9] T. Umegaki, C. Takei, Y. Watanuki, Q. Xu, Y. Kojima, J. Mol. Catal. A: Chem. 371 (2013) 1-7.

[10] A. Imhof, Langmuir 17 (2001) 3579-3585.

[11] Z. Deng, M. Chen, S. Zhou, B. You, L. Wu, Langmuir 22(14) (2006) 6403-6407.

[12] F. Caruso, R.A. Caruso, H. Möhwald, Science 282 (1998) 1111-1114.

[13] H.W. Duan, D.Y. Wang, N.S. Sobal, M. Giersig, D.G. Kurth, H. Mohwald, Nano Lett. 5 (2005) 949-952.

DOI: 10.1021/nl0505391

[14] T. Nakashima, N. Kimizuka, J. Am. Chem. Soc. 125 (2003) 6386-6387.

[15] W.J. Li, M.O. Coppens, Chem. Mater. 17 (2005) 2241-2246.

[16] T. Yokoi, Y. Sakamoto, O. Terasaki, Y. Kubota, T. Okubo, T. Tatsumi, J. Am. Chem. Soc. 128 (2006) 13664-13665.

In order to see related information, you need to Login.