[1]
J. C. Elliott, Structure and Chemistry of the Apatites and Other Calcium. Orthophosphates. Elsevier, Amsterdam-London-New York-Tokyo, (1994).
Google Scholar
[2]
S.V. Dorozhkin, Calcium orthophosphate-based biocomposites and hybrid biomaterials, J. Mater. Sci. 44 (2009) 2343-2387.
DOI: 10.1007/s10853-008-3124-x
Google Scholar
[3]
A. K. Nayak, Hydroxyapatite Synthesis Methodologies: An Overview. Int. J. Chem. Tech. Res. 2 (2010) 903-907.
Google Scholar
[4]
E. Boanini, M. Gazzano, A. Bigi, Ionic substitutions in calcium phosphates synthesized at low temperature, Acta Biomater. 6 (2010) 1882-1894.
DOI: 10.1016/j.actbio.2009.12.041
Google Scholar
[5]
M. S. Sader, K. Lewis, G. A. Soares, R. Z. LeGeros, Simultaneous Incorporation of Magnesium and Carbonate in Apatite: Effect on Physico-chemical Properties, Mater. Res. 16 (2013) 779-784.
DOI: 10.1590/s1516-14392013005000046
Google Scholar
[6]
N. Vandecandelaere, Ch. Rey, Ch. Drouet, Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters, J. Mater. Sci.: Mater Med. 23 (2012) 2593-2606.
DOI: 10.1007/s10856-012-4719-y
Google Scholar
[7]
Ch. Drouet, Apatite Formation: Why It May Not Work as Planned, and How to Conclusively Identify Apatite Compounds, BioMed. Res. Intern. (2013) 490-496.
DOI: 10.1155/2013/490946
Google Scholar
[8]
M. D. O'Donnell , Y. Fredholm, A. de Rouffignac, R.G. Hill, Structural analysis of a series of strontium-substituted apatites, Acta Biomater. 4 (2008) 1455-1464.
DOI: 10.1016/j.actbio.2008.04.018
Google Scholar
[9]
F. Ren, R. Xin, X. Ge, Y. Leng, Characterization and structural analysis of zinc-substituted hydroxyapatites, Acta Biomater. 8 (2009) 3141-3149.
DOI: 10.1016/j.actbio.2009.04.014
Google Scholar