Experimental Study on Ultrasonic Assisted Grinding of C/SiC Composites

Article Preview

Abstract:

In the present work, ultrasonic assisted grinding (UAG) and conventional grinding (CG, without ultrasonic) tests of Carbon fiber reinforced silicon carbide matrix (C/SiC) composites were conducted. In addition, analysis was done by comparing the machining quality, grinding force, and specific grinding energy between the two processes. The results showed that material removal mode of carbon fiber both in CG and UAG were brittle fracture, and fracture size had no obvious difference. Compared with CG, brittle fracture area of SiC increased during UAG. In comparison with CG, the normal grinding force and tangential grinding force for UAG were reduced maximally by 45%, 39% respectively of those for CG. Accordingly, specific grinding energy was also reduced by UAG. Therefore, UAG can improve the grinding performance of C/SiC composites significantly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-133

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Zhang, L. F. Cheng, L. T. Zhang and Y. D. Xu: Acta. Aeronaut. Astronaut. Sin Vol. 25 (2004), p.508.

Google Scholar

[2] Y. Q. Wang, L. T. Zhang, L. F. Cheng and J. Q. Ma: J. Chin. Ceram. Soc Vol. 36(2008), p.1062.

Google Scholar

[3] H. R. Xu, L. T. Zhang and H. Mei: Acta. Aeronaut. Astronaut. Sin Vol. 33 (2012), p.1547.

Google Scholar

[4] W. Krenkel and F. Berndt: Mater. Sci. Eng. A Vol 412 (2005), p.412.

Google Scholar

[5] Y. Z. Cai, S. W. Fan, H. Y. Li, L. T. Zhang, L. F. Cheng and J. Jiang: Mater. Sci. Eng. A Vol 527 (2010), p.539.

Google Scholar

[6] T. Tawakoli and B. Azarhoushang: Int. J. Mach. Tools. Manuf Vol. 51 (2011), p.112.

Google Scholar

[7] J. Liu, H. B. Li, X.Y. Zhang, Z. L. Hong, Z. P. He, Y. Zhang and X. Y. Liu: Acta. Materiae. Compositae. Sinica Vol 29 (2012), p.113.

Google Scholar

[8] A. Bahman and T. Taghi: Int. J. Mach. Tools. Manuf Vol. 57 (2011), p.945.

Google Scholar

[9] B. Christian, S. Ralf, Andreas W, W. Christian and H. Sophia: Int. J. Mach. Tools. Manuf Vol. 47 (2010), p.153.

Google Scholar

[10] K. Ishikawa, H. Suwabe, T. Nishide, M. Uneda: Precis. Eng Vol. 22 (1998), p.196.

Google Scholar

[11] Y. Peng, Y. B. Wu, Z. Q. Liang, Y. B and X. Lin: Int. J. Mach. Tools. Manuf Vol. 54 (2011), p.941.

Google Scholar

[12] Z. Q. Liang, X. B. Wang, Y. B. Wu, L. J. Xie, Z. B. Liu and W. X. Zhao: J Mater Process Technol Vol. 212 (2102), p.868.

Google Scholar

[13] E. Uhlmann: Ann. CIRP. Manuf. Technol Vol. 47 (1998), p.249.

Google Scholar

[14] T. W. Hwang and S. Malkin: J. Manuf. Sci. Eng Vol. 121 (1999), p.623.

Google Scholar