[1]
M. Holman, Autoclave age forming large aluminum aircraft panels, J. Mech. Work. Tech. 20 (1989) 477-488.
DOI: 10.1016/0378-3804(89)90055-7
Google Scholar
[2]
A.W. Zhu, E.S. Starke Jr., Materials aspects of age-forming of Al-xCu alloys, J. Mat. Process Tech. 117 (2001) 354–358.
DOI: 10.1016/s0924-0136(01)00795-6
Google Scholar
[3]
K.C. Ho, J. Lin, T.A. Dean, Modelling of springback in creep forming thick aluminum sheets, Int. J. Plasticity 20 (2004) 733–751.
DOI: 10.1016/s0749-6419(03)00078-0
Google Scholar
[4]
K.C. Ho, J. Lin, T.A. Dean, Constitutive modelling of primary creep for age forming an aluminium alloy, J. Mat. Process Tech. 153-154 (2004) 122–127.
DOI: 10.1016/j.jmatprotec.2004.04.304
Google Scholar
[5]
P. -P. Jeunechamps, K.C. Ho, J. Lin, J. -P. Ponthot, T.A. Dean, A closed form technique to predict springback in creep age-forming, Int. J. Mech. Sci. 48 (2006) 621–629.
DOI: 10.1016/j.ijmecsci.2006.01.005
Google Scholar
[6]
J. Lin, K.C. Ho, T.A. Dean, An integrated process for modelling of precipitation hardening and springback in creep age-forming, Int. J. Mach. Tools. Manuf. 46 (2006) 1266–1270.
DOI: 10.1016/j.ijmachtools.2006.01.026
Google Scholar
[7]
L. Zhan, J. Lin, T.A. Dean. A review of the development of creep age forming: Experimentation, modelling and applications, Int. J. Mach. Tools Manuf. 51 (2011) 1–17.
DOI: 10.1016/j.ijmachtools.2010.08.007
Google Scholar
[8]
L. Zhan, J. Lin, T.A. Dean, M. Huang, Experimental studies and constitutive modelling of the hardening of aluminium alloy 7055 under creep age forming conditions, Int. J. Mech. Sci. 53 (2011) 595–605.
DOI: 10.1016/j.ijmecsci.2011.05.006
Google Scholar
[9]
J. Peddieson, G. Buchanan, Mathematical modeling of an age-forming process, Math. Comput. Model. 14 (1990) 1057–1060.
DOI: 10.1016/0895-7177(90)90338-n
Google Scholar
[10]
M. Sallah, J. Peddieson, S. Foroudastan, A mathematical model of autoclave age forming. J. Mat. Process, Tech. 28 (1991) 211–219.
DOI: 10.1016/0924-0136(91)90220-9
Google Scholar
[11]
D. Guines, A. Gavrus, E. Ragneau, Numerical modeling of integrally stiffened structures forming from creep age forming technique, Int. J. Mat. Form. 1 (2008) 1071–1074.
DOI: 10.1007/s12289-008-0204-z
Google Scholar
[12]
Z.L. Kowalewski, D.R. Hayhurst, B.F. Dyson, Mechanisms-based creep constitutive equations for an aluminium alloy, J. Strain Analysis Eng. Design 29 (1994) 309–316.
DOI: 10.1243/03093247v294309
Google Scholar
[13]
Z.L. Kowalewski, J. Lin, D.R. Hayhurst, Experimental and Theoretical Evaluation of a High-Accuracy Uni-axial Creep Testpiece with Slit Extensometer Ridges, Int. J. Mech. Sci. 36 (1994) 751–769.
DOI: 10.1016/0020-7403(94)90090-6
Google Scholar
[14]
J. Lin, J. Yang, GA-based multiple objective optimisation for determining viscoplastic constitutive equations for superplastic alloys, Int. J. Plasticity 15 (1999) 1181–1196.
DOI: 10.1016/s0749-6419(99)00031-5
Google Scholar
[15]
ABAQUS, Abaqus 6. 11 Theory Manual, Dassault Systèmes, Providence, RI, USA, (2011).
Google Scholar
[16]
S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, Second Ed., McGraw-Hill Book Company, Inc., New York, 1959, pp.42-46.
Google Scholar