[1]
W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering, 280 (2000) 37-49.
DOI: 10.1016/s0921-5093(99)00653-x
Google Scholar
[2]
K.R. Brown, M.S. Venie, R.A. Woods, The increasing use of aluminum in automotive applications, JOM, 47 (1995) 20-23.
DOI: 10.1007/bf03221224
Google Scholar
[3]
D. Banabic, F. Barlat, O. Cazacu, T. Kuwabara, Advances in anisotropy and formability, International Journal of Material Forming, 3 (2010) 165-189.
DOI: 10.1007/s12289-010-0992-9
Google Scholar
[4]
M.S. Mohamed, A.D. Foster, J. Lin, D.S. Balint, T.A. Dean, Investigation of deformation and failure features in hot stamping of AA6082: Experimentation and modelling, International Journal of Machine Tools and Manufacture, 53 (2012) 27-38.
DOI: 10.1016/j.ijmachtools.2011.07.005
Google Scholar
[5]
L. Wang, M. Strangwood, D. Balint, J. Lin, T.A. Dean, Formability and failure mechanisms of AA2024 under hot forming conditions, Materials Science and Engineering: A, 528 (2011) 2648-2656.
DOI: 10.1016/j.msea.2010.11.084
Google Scholar
[6]
E. Hsu, J.E. Carsley, R. Verma, Development of Forming Limit Diagrams of Aluminum and Magnesium Sheet Alloys at Elevated Temperatures, Journal of Materials Engineering and Performance, 17 (2008) 288-296.
DOI: 10.1007/s11665-007-9196-y
Google Scholar
[7]
S.P. Keeler, W.A. Backofen, Plastic instability and fracture in sheets stretched over rigid punches., ASM Transactions Quarterly, 56 (1963) 25-48.
Google Scholar
[8]
G.M. Goodwin, Application of Strain Analysis to Sheet-Metal-Forming Problems in the Press Shop, MET ITAL, 60 (1968) 767-774.
Google Scholar
[9]
T.Y. Olsen, Machines for ductility testing, Proceeding of the American Society of Materials, 20 (1920) 398-403.
Google Scholar
[10]
S.S. Hecker, A Simple Forming-Limit Curve Technique and Results on Aluminum Alloys, in: Procedings of the IDDRG Congress, Amsterdam, 1972, p.35.
Google Scholar
[11]
K. Nakazima, T. Kikuma, K. Hasuka, Study on the formability of steel sheets, in: Yawata Technical Report 264, 1968, p.8517–8530.
Google Scholar
[12]
Z. Marciniak, K. Kuczynski, Limit strains in the processes of stretch-forming sheet metal, International Journal of Mechanical Sciences, 9 (1967) 609-620.
DOI: 10.1016/0020-7403(67)90066-5
Google Scholar
[13]
K.S. Raghavan, A simple technique to generate in-plane forming limit curves and selected applications, Metallurgical and Materials Transactions A, 26 (1995) 2075-(2084).
DOI: 10.1007/bf02670679
Google Scholar
[14]
R.A. Ayres, M.L. Wenner, Strain and strain-rate hardening effects in punch stretching of 5182-0 aluminum at elevated temperatures, Metallurgical Transactions A, 10 (1979) 41-46.
DOI: 10.1007/bf02686404
Google Scholar
[15]
Z. Shi, Y. Wang, J. Lin, T. Dean, D. Balint, M. Stanton, D. Watson, An Investigation, Using Standard Experimental Techniques, to Determine FLCs at Elevated Temperature for Aluminium Alloys, in: Proceedings of the 3rd International Conference on New Forming Technology, (2012).
Google Scholar
[16]
R. Bagheriasl, Formability of Aluminum Alloy Sheet at Elevated Temperature, in, University of Waterloo, (2012).
Google Scholar
[17]
T. Naka, G. Torikai, R. Hino, F. Yoshida, The effects of temperature and forming speed on the forming limit diagram for type 5083 aluminium-magnesium alloy sheet, Journal of Materials Processing Technology, 113 (2001) 648-653.
DOI: 10.1016/s0924-0136(01)00650-1
Google Scholar
[18]
D. Li, A.K. Ghosh, Biaxial warm forming behavior of aluminum sheet alloys, Journal of Materials Processing Technology, 145 (2004) 281-293.
DOI: 10.1016/j.jmatprotec.2003.07.003
Google Scholar
[19]
H.S. Kim, M. Koc, J. Ni, A. Ghosh, Finite Element Modeling and Analysis of Warm Forming of Aluminum Alloys—Validation Through Comparisons With Experiments and Determination of a Failure Criterion, Journal of Manufacturing Science and Engineering, 128 (2006).
DOI: 10.1115/1.2194065
Google Scholar
[20]
G. Palumbo, D. Sorgente, L. Tricarico, The design of a formability test in warm conditions for an AZ31 magnesium alloy avoiding friction and strain rate effects, International Journal of Machine Tools and Manufacture, 48 (2008) 1535-1545.
DOI: 10.1016/j.ijmachtools.2008.06.010
Google Scholar
[21]
L. Leotoing, D. Guines, I. Zidane, E. Ragneau, Cruciform shape benefits for experimental and numerical evaluation of sheet metal formability, Journal of Materials Processing Technology, 213 (2013) 856-863.
DOI: 10.1016/j.jmatprotec.2012.12.013
Google Scholar
[22]
A. Hannon, P. Tiernan, A review of planar biaxial tensile test systems for sheet metal, Journal of Materials Processing Technology, 198 (2008) 1-13.
DOI: 10.1016/j.jmatprotec.2007.10.015
Google Scholar
[23]
G. Ferron, A. Makinde, Design and development of a biaxial strength testing device, Journal of Testing Evaluation, 16 (1988) 253-256.
DOI: 10.1520/jte10375j
Google Scholar
[24]
P. Terriault, K. Settouane, V. Brailovski, Biaxial Testing at Different Temperatures of Cruciform Ti-Ni Samples, in: SMST 2003: Proceedings of the International Conference on Shape Memory and Superelastic Technologies, (2003).
Google Scholar