[1]
T. Kuwabara, Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations, International Journal of Plasticity 23 (2007) 385-419.
DOI: 10.1016/j.ijplas.2006.06.003
Google Scholar
[2]
D. Banabic, F. Barlat, O. Cazacu, T. Kuwabara, Advances in anisotropy and formability, International Journal of Material Forming 3 (2010) 165-189.
DOI: 10.1007/s12289-010-0992-9
Google Scholar
[3]
T. Kuwabara, S. Ikeda, T. Kuroda, Measurement and Analysis of Differential Work Hardening in Cold-Rolled Steel Sheet under Biaxial Tension, Journal of Materials Processing Technology 80-81 (1998) 517-523.
DOI: 10.1016/s0924-0136(98)00155-1
Google Scholar
[4]
T. Kuwabara, A. Van Bael and E. Iizuka, Measurement and analysis of yield locus and work hardening characteristics of steel sheets wtih different r-values, Acta Materialia 50 (2002) 3717- 3729.
DOI: 10.1016/s1359-6454(02)00184-2
Google Scholar
[5]
T. Kuwabara, K. Hashimoto, E. Iizuka, J. -W. Yoon, Effect of anisotropic yield functions on the accuracy of hole expansion simulations, Journal of Materials Processing Technology 211 (2011) 475-481.
DOI: 10.1016/j.jmatprotec.2010.10.025
Google Scholar
[6]
D. Yanaga, T. Kuwabara, N. Uema, M. Asano, Material modeling of 6000 series aluminum alloy sheets with different density cube textures and effect on the accuracy of finite element simulation, International Journal of Solids and Structures 49 (2012).
DOI: 10.1016/j.ijsolstr.2012.03.005
Google Scholar
[7]
D. Yanaga, H. Takizawa, T. Kuwabara, Formulation of Differential Work Hardening of 6000 Series Aluminum Alloy Sheet and Application to Finite Element Analysis, Journal of Japan Society for Technology of Plasticity 96 (2010) 557-563. (in Japanese).
DOI: 10.9773/sosei.55.55
Google Scholar
[8]
M. Ishiki, T. Kuwabara, Y. Hayashida, Measurement and analysis of differential work hardening behavior of pure titanium sheet using spline function, International Journal of Material Forming 4 (2011) 193-204.
DOI: 10.1007/s12289-010-1024-5
Google Scholar
[9]
T. Kuwabara, K. Yoshida, K. Narihara, S. Takahashi, Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure, International Journal of Plasticity 21 (2005) 101-117.
DOI: 10.1016/j.ijplas.2004.04.006
Google Scholar
[10]
T. Kuwabara, F. Sugawara, Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range, International Journal of Plasticity 45 (2013) 103-118.
DOI: 10.1016/j.ijplas.2012.12.003
Google Scholar
[11]
K. Yoshida, T. Kuwabara, K. Narihara and S. Takahashi, Experimental Verification of the PathIndependence of Forming Limit Stresses , International Journal of Forming Processes 8 (2005) 283-298.
Google Scholar
[12]
K. Yoshida, T. Kuwabara, Effect of strain hardening behavior on forming limit stresses of steel tube subjected to nonproportional loading paths, International Journal of Plasticity 23 (2007) 1260-1284.
DOI: 10.1016/j.ijplas.2006.11.008
Google Scholar
[13]
K. Yoshida, T. Kuwabara and M. Kuroda, Path-dependence of the forming limit stresses in a sheet metal, International Journal of Plasticity 23 (2007) 361-384.
DOI: 10.1016/j.ijplas.2006.05.005
Google Scholar
[14]
K. Yoshida and N. Suzuki, Forming limit stresses predicted by phenomenological plasticity theories with anisotropic work-hardening behavior, International Journal of Plasticity 24 (2008) 118-139.
DOI: 10.1016/j.ijplas.2007.02.008
Google Scholar
[15]
T. Hakoyama and T. Kuwabara, Biaxial Tensile Test of High Strength Steel Sheet for Large Plastic Strain Range, Key Engineering Materials 504-506 (2012) 59-64.
DOI: 10.4028/www.scientific.net/kem.504-506.59
Google Scholar
[16]
F. Barlat, J.C. Brem, J.W. Yoon, K Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets - Part 1: Theory, International Journal of Plasticity 19 (2003) 1297-1319.
DOI: 10.1016/s0749-6419(02)00019-0
Google Scholar
[17]
Z. Marciniak, K. Kuczyński, Limit strains in the processes of stretch-forming sheet metal, International Journal of Mechanical Sciences 9 (1967) 609–620.
DOI: 10.1016/0020-7403(67)90066-5
Google Scholar
[18]
R. Hill, S.S. Hecker, M.G. Stout, An investigation of plastic flow and differential work hardening in orthotropic brass tubes under fluid pressure and axial load, International Journal of Solids and Structures 31 (1994) 2999-3021.
DOI: 10.1016/0020-7683(94)90065-5
Google Scholar
[19]
R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society London A193 (1948) 281-297.
Google Scholar
[20]
D. Peirce, C.F. Shih, A. Needleman, A tangent modulus method for rate dependent solids, Computers & Structures18 (1984) 875–887.
DOI: 10.1016/0045-7949(84)90033-6
Google Scholar