Study on Hot-Working Behavior of High Carbon Steel / Low Carbon Steel Composite Material Using Processing Map

Article Preview

Abstract:

The high carbon steel (HCS)/low carbon steel (LCS) laminated composite made by centrifugal casting technology was subjected to hot compression tests on Gleeble 3500 thermomechanical simulator in a range of temperatures (800-1100 oC) and strain rates (0.02-10 s-1). The hot-working behavior of the laminate was characterised by analysing the flow stress-strain curves and constructing the processing map based on dynamic materials model via superimposing efficiency of power dissipation and flow instability maps. The safe and unsafe processing conditions were identified in the processing map which was validated by microstructural examinations. Banded microstructure and micro-shear cracks occurred in the unsafe domains were responsible for the flow instability, while dynamic recrystallisation in stable domains with high efficiency of power dissipation imparted a good workability to the laminate. The optimum hot-working parameters were determined to be: (i) 800-1050 oC and 0.02-0.04 s-1, (ii) 800-1045 oC and 2.5-10 s-1 and (iii) 1050-1100 oC and 0.02-2.5 s-1.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 622-623)

Pages:

330-339

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.D. Verhoeven, H.F. Clark: Mater. Charact. Vol. 41 (1998), p.183.

Google Scholar

[2] Y.D. Chung, H. Fujii, R. Ueji, N. Tsuji: Scripta Mater. Vol. 63 (2010), p.223.

Google Scholar

[3] S.A. Khodir, Y. Morisada, R. Ueji, H. Fujii: Mater. Sci. Eng., A Vol. 558 (2012), p.572.

Google Scholar

[4] S. Sun, M. Pugh: Mater. Sci. Eng., A Vol. 300 (2001), p.135.

Google Scholar

[5] G.L. Xie, J. Liu, J.T. Han, X.G. Han: Journal of University of Science and Technology Beijing Vol. 32 (2010), p.340. (In Chinese).

Google Scholar

[6] X.J. Gao, Z.Y. Jiang, D.B. Wei, H.J. Li, S.H. Jiao, J.T. Han, in: The Fifth Baosteel Biannual Academic Conference, Shanghai, China, 2013, pp. C110-116.

Google Scholar

[7] Y.V.R.K. Prasad, T. Seshacharyulu, S.C. Medeiros, W.G. Frazier: Mater. Manuf. Processes Vol. 15 (2000), p.581.

Google Scholar

[8] M. Rajamuthamilselvan, S. Ramanathan: Mater. Manuf. Processes Vol. 27 (2012), p.260.

Google Scholar

[9] Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Baker: Metall. Trans. A Vol. 15A (1984), p.1883.

Google Scholar

[10] R. Ravi, Y.V.R.K. Prasad, V.V.S. Sarma, R.S. Raidu: Mater. Manuf. Processes Vol. 21 (2006), p.756.

Google Scholar

[11] R. Ravi, Y.V.R.K. Prasad, V.V.S. Sarma: Mater. Manuf. Processes Vol. 22 (2007), p.846.

Google Scholar

[12] P. Cavaliere, E. Cerri, P. Leo: Compos. Sci. Technol. Vol. 64 (2004), p.1287.

Google Scholar

[13] G. Ganesan, K. Raghukandan, R. Karthikeyan, B.C. Pai: Mater. Sci. Eng., A Vol. 369 (2004), p.230.

Google Scholar

[14] S. Ramanathan, R. Karthikeyan, G. Ganasen: Mater. Sci. Eng., A Vol. 441 (2006), p.321.

Google Scholar

[15] R. Liu, W. Cao, T.X. Fan, C.F. Zhang, D. Zhang: Mater. Sci. Eng., A Vol. 527 (2010), p.4687.

Google Scholar

[16] L.J. Huang, Y.Z. Zhang, L. Geng, B. Wang, W. Ren: Mater. Sci. Eng., A Vol. 580 (2013), p.242.

Google Scholar

[17] A. Momeni, K. Dehghani: Mater. Sci. Eng., A Vol. 527 (2010), p.5467.

Google Scholar

[18] M.J. Luton, C.M. Sellars: Acta Metall. Vol. 20 (1969), p.1033.

Google Scholar

[19] H. Ziegler, in: I.N. Sneedon, R. Hill (Eds. ), Progress in Solid Mechanics, vol. 4, John Wiley and Sons, New York, 1963, pp.63-193.

Google Scholar

[20] Y.B. Yang, Z.M. Zhang, X. Zhang: Mater. Sci. Eng., A Vol. 558 (2012), p.112.

Google Scholar

[21] F.A. Khalid, M. Farooque, A. ul Haq, A.Q. Khan: Mater. Sci. Technol. Vol. 15 (1999), p.1209.

Google Scholar

[22] F.G. Caballero, A. Garcia-Junceda, C. Capdevila, C. Garcia de Andres: Mater. Trans., JIM Vol. 47 (2006), p.2269.

Google Scholar

[23] J.P. Sah, G.J. Richardson, C.M. Sellars: Metal Sci. Vol. 8 (1974), p.325.

Google Scholar

[24] M. Ueki, S. Horie, T. Nakamura: Mater. Sci. Tech. Vol. 3 (1987), p.329.

Google Scholar

[25] T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V.R.K. Prasad: Mater. Sci. Eng. A Vol. 325 (2002), p.112.

Google Scholar