A Cohesive Zone Model for Simulation of the Bonding and Debonding in Metallic Composite Structures - Experimental Validations

Article Preview

Abstract:

Flexible and economic production of composite structures which include functional layersrequires new manufacturing techniques. Joining by plastic deformation is a powerful technique whichis widely used in production processes to create metal composites [1]. The use of plastic deformationin joining processes offers improved accuracy, reliability and environmental safety [2]. The presentstudy deals with modeling of the bonding and debonding behavior in metallic composite structures.Therefore, a general cohesive zone element formulation in the framework of zero-thickness interfaceelements is developed. This enables the accurate and efficient modeling of the interface based on aninterfacial traction-separation law. The paper is concluded by a detailed description of the processsimulation and a comparison of its results with experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 622-623)

Pages:

443-452

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Bay, C. Clemensen, and O. Juelstorp, Bond strength in cold roll bonding, CIRP Annals Manufacturing Technology, vol. 34, pp.221-224, (1985).

DOI: 10.1016/s0007-8506(07)61760-0

Google Scholar

[2] K. I. Mori, N. Bay, L. Fratini, F. Micari, and A. E. Tekkaya, Joining by plastic deformation, CIRP Annals - Manufacturing Technology, vol. , In press, no. 1, (2013).

DOI: 10.1016/j.cirp.2013.05.004

Google Scholar

[3] C. Weddeling, M. Marré, A. Brosius, and A. E. Tekkaya, Integration von umformen, trennen und fügen für die flexible fertigung von leichten tragwerkstrukturen, Fortschrittsbericht VDI, vol. 1, no. 678, pp.169-191, (2011).

Google Scholar

[4] S. Schafer, S. Abedini, P. Groche, C. Ludwig, F. Backer, E. Abele, B. Jalizi, C. Muller, and V. Kaune, Joining techniques using the technology of the CRC 666, Bauingenieur, vol. 1, no. 1, pp.8-13, (2013).

Google Scholar

[5] J. Cave and J. Williams, Mechanismof cold pressurewelding by rolling, Journal of the Institute of Metals, vol. 101, no. 0, pp.203-207, (1973).

Google Scholar

[6] P. K. Wright, D. A. Snow, and C. K. Tay, Interfacial conditions and bond strength in cold pressure welding by rolling, Metals Technology, vol. 5, no. 1, pp.24-31, (1978).

DOI: 10.1179/mt.1978.5.1.24

Google Scholar

[7] D. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, vol. 8, no. 2, pp.100-104, (1960).

DOI: 10.1016/0022-5096(60)90013-2

Google Scholar

[8] G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture, Advances in Applied Mechanics, vol. 7, no. 2, pp.55-129, (1962).

DOI: 10.1016/s0065-2156(08)70121-2

Google Scholar

[9] V. Tvergaard, Effect of fibre debonding in a whisker-reinforced metal, Materials Science and Engineering: A, vol. 125, no. 2, pp.203-213, (1990).

DOI: 10.1016/0921-5093(90)90170-8

Google Scholar

[10] G. Camacho and M. Ortiz, Computational modelling of impact damage in brittle materials, International Journal of Solids and Structures, vol. 33, no. 20-22, pp.2899-2938, (1996).

DOI: 10.1016/0020-7683(95)00255-3

Google Scholar

[11] J. Chaboche, F. Feyel, and Y. Monerie, Interface debonding models: a viscous regularization with a limited rate dependency, International Journal of Solids and Structures, vol. 38, no. 18, pp.3127-3160, (2001).

DOI: 10.1016/s0020-7683(00)00053-6

Google Scholar

[12] A. Abdul-Baqi, P. Schreurs, and M. Geers, Fatigue damage modeling in solder interconnects using a cohesive zone approach, International Journal of Solids and Structures, vol. 42, no. 3-4, pp.927-942, (2005).

DOI: 10.1016/j.ijsolstr.2004.07.026

Google Scholar

[13] N. Konchakova, F. Balle, F. Barth, R. Mueller, D. Eifler, and P. Steinmann, Finite element analysis of an inelastic interface in ultrasonic welded metal/fibre-reinforced polymer joints, Computational Materials Science, vol. 50, no. 1, pp.184-190, (2010).

DOI: 10.1016/j.commatsci.2010.07.024

Google Scholar

[14] M. Paggi and P. Wriggers, A nonlocal cohesive zone model for finite thickness interfaces - part i: Mathematical formulation and validation with molecular dynamics, Computational Materials Science, vol. 50, no. 5, pp.1625-1633, (2011).

DOI: 10.1016/j.commatsci.2010.12.024

Google Scholar

[15] A. Needleman, An analysis of decohesion along an imperfect interface, International Journal of Fracture, vol. 42, no. 1, pp.21-40, (1990).

DOI: 10.1007/978-94-017-2444-9_2

Google Scholar

[16] J. Segurado and J. Llorca, A new three-dimensional interface finite element to simulate fracture in composites, International Journal of Solids and Structures, vol. 41, pp.2977-2993, (2004).

DOI: 10.1016/j.ijsolstr.2004.01.007

Google Scholar

[17] P. Wriggers, T. V. Van, and E. Stein, Finite element formulation of large deformation impactcontact problems with friction, Computers and Structures, vol. 37, no. 3, pp.319-331, (1990).

DOI: 10.1016/0045-7949(90)90324-u

Google Scholar

[18] R. Buczkowski andM. Kleiber, Elasto-plastic interface model for 3d-frictional orthotropic contact problems, International Journal for Numerical Methods in Engineering, vol. 40, no. 4, (1997).

DOI: 10.1002/(sici)1097-0207(19970228)40:4<599::aid-nme81>3.0.co;2-h

Google Scholar

[19] G. Zavarise, P. Wriggers, E. Stein, and B. A. Schrefler, A numerical model for thermomechanical contact based on microscopic interface laws, Mechanics research communications, vol. 19 (3), pp.173-182, (1992).

DOI: 10.1016/0093-6413(92)90062-f

Google Scholar