Key Engineering Materials
Vols. 629-630
Vols. 629-630
Key Engineering Materials
Vol. 628
Vol. 628
Key Engineering Materials
Vol. 627
Vol. 627
Key Engineering Materials
Vol. 626
Vol. 626
Key Engineering Materials
Vol. 625
Vol. 625
Key Engineering Materials
Vol. 624
Vol. 624
Key Engineering Materials
Vols. 622-623
Vols. 622-623
Key Engineering Materials
Vol. 621
Vol. 621
Key Engineering Materials
Vol. 620
Vol. 620
Key Engineering Materials
Vol. 619
Vol. 619
Key Engineering Materials
Vol. 618
Vol. 618
Key Engineering Materials
Vol. 617
Vol. 617
Key Engineering Materials
Vol. 616
Vol. 616
Key Engineering Materials Vols. 622-623
Paper Title Page
Abstract: Porthole die extrusion of lightweight alloys is used for the production of profiles, which may have complex cross section geometries. The mechanical properties of these profiles are deeply affected by the seam welds, which are generated in hollow profiles along the whole length. The seam welds result from the rejoining of the material streams in the welding chamber of the porthole die. The joining phase and hence the seam weld quality are strongly influenced by the temperature and the pressure conditions in the welding chamber. Those process conditions can be adjusted by a proper die design.
In this work, the focus lies on the feeder section of the extrusion die, which consists of a set of bridges, whose shapes influence the material entry in the welding chamber. A numerical study was carried out to investigate different bridge shapes with regard to the pressure inside the welding chamber and the punch load. Subsequently, the volume of the bridge was fixed to isolate and better investigate the influence of the shape. It was observed that bridge designs leading to higher flow distortion cause higher pressure decrement along the welding plane and, consequently, degradation of the welding conditions.
87
Abstract: Because of the great speed range in a finishing block of a wire rod mill, the reduction of torsional vibrations makes it possible to achieve closer rolling tolerances. The components transmitting the torque like gear box, coupling etc. can generate non-smooth or alternating torques which affect the product quality. To study the influences of torsion vibrations on the product quality, the dynamic interactions of the block and rolling process are simultaneously analyzed by a simulation model. As an example, a three stand arrangement is considered. The real transmission system is idealized as a structurally discrete torsional vibration model. The generalized rotational coordinates with a large number of rotational degrees of freedom can be reduced among others constants by means of gear ratios. Euler-Lagrange equations are applied to create the coupled equations of motion, which together constitute an ordinary differential equation of order 28. The rolling and main drive torques are defined as excitation for vibration on the right side of the equation system. A DC motor is selected as main drive and the voltage circuit equation of motor is integrated into the system of differential equations. The armature current and its interaction are consequently simulated. The rotational speed of rolls and motor, as well as roll torques, longitudinal stresses in rod and section widths are shown in diagrams as the result and thereby the torsional vibration of the essential elements of the system are studied for different temperatures and cross-sectional variations.
95
Abstract: Nowadays manufacturing technologies have to be evaluated not only for the technical features they can provide to products, but also considering the environmental perspective as well. As long as the technological feasibility of a given process is guaranteed, processes minimizing resources and energy consumption have to be selected for manufacturing. With respect to this topic, the research studies in the domain of metal processing technologies predominantly focus on conventional material removal processes as milling and turning. Despite some exceptions, many other non-machining technologies, such as metal forming processes, are still not well documented in terms of their energy and resource efficiency, and related environmental impact. In this paper, an environmental challenge between two traditional technologies is developed: the environmental performances of a partial hot extrusion process and of a turning processes are quantified and compared. A Life Cycle Assessment (LCA) approach is implemented to properly analyze the considered processes. The material production step and the manufacturing phase to obtain a simple axy-symmetric aluminum component is considered for the Life Cycle Inventory (LCI) data collection step. Besides, the material and consumables usage and the consumed electrical power are measured in order to quantify the energy consumption of the manufacturing phase. Further, the environmental impacts related to the manufacturing of the extrusion dies and of the turning process are included in the analysis. The paper presents an early step of a wider research project aiming at identifying the greenest technologies as functions of given product features.
103
Abstract: A 2D axi-symmetric finite element model for tube hot extrusion process has been established by consideration of the billet transfer, glass lubrication, constitutive equation of IN690 superalloy and modified Archard wear model. The influence of extrusion process parameters on the stress state and wear conditions of the mandrel surface has been investigated. The results show that under the optimal extrusion process parameters of the extrusion speed of 250 mm/s, the friction factor of 0.05 and the billet preheating temperature of 1250 ̊C, the mandrel can be reused 200 times when it is fixed and 500 times when it moves with the ram.
111
Abstract: The deformation load is the most important parameter in the press design as it affects the structure and the general integrity of the final product. Therefore, every other parameter such as die shape, friction, type of process (hot or cold), and speed considered in modeling is optimized to cut back on the metal forming load. The flow of metal is largely influenced by the geometry of the die and hence the geometric shape of the tools is the main factor by which an optimum load can be evaluated. In extrusion process the strain distribution, resulting from deformation load, and other important variables that influence material structure, such as a hydrostatic stress, are strongly dependent on the geometry of the die. In the present investigation using linearly converging die profiles, the extrusion of symmetric and asymmetric polygons such as circular, square, triangular, hexagonal, heptagonal, octagonal, and L-, T-and H-, respectively sections from round billet have been numerically simulated. Mathematical equations describing the die profiles were derived, and then using MATLAB R2009b the co-ordinate of the die profiles was evaluated. A solid CAD model for the linearly converging die profile was made using Autodesk Inventor 2013 software and numerical analysis using DEFORM software for extrusion of the above sections from round billet was then performed to predict, for dry and lubricated condition, the extrusion load during deformation. It is found that the predictive loads for asymmetric shapes are found to be higher than that of the symmetric shapes. While there is no marked difference between the predictive loads for symmetric shapes that of the asymmetric shapes is significant where L-section has the highest extrusion load, followed by T-section and the H-section given the least pressure.
119
Abstract: The study presents a new method, developed by the authors, for producing twist drills by extrusion using a three-slide forging press. The method consists in using two sectional dies with specially shaped impressions that allow the removal of a ready drill from the die without unscrewing. The study describes the main assumptions of the new method for twist drill extrusion, discussing benefits offered by this method when compared to the conventional process for producing twist drills by extrusion using a monolithic die. In order to verify the proposed solution, dies conforming to the assumptions of the new method were designed and executed. Experimental tests were conducted under laboratory conditions using a three-slide forging press. The model of the material used in the experiments was assigned the properties of Pb1 lead. As a result of the experiments, the theoretical assumptions of the new method could be examined and its practical application verified. Also, ideas for further research aimed at better understanding of the new technology for producing twist drills by extrusion are presented.
129
Abstract: Oxides Dispersed Strengthened (ODS) stainless steels are foreseen for fuel cladding tubes in the coming generation of fission nuclear reactors. In spite of a bcc matrix, those steels present a convenient creep behavior thanks to very fine oxides dispersion. Those grades are currently obtained by Powder Metallurgy (PM). After mechanical alloying with the oxide, the powder is commonly consolidated as seamless tube. On CEA facilities, new ferritic ODS stainless steels are produced by Hot Extrusion (HE). The control of the microstructure after extrusion is a key issue for this grade regarding service conditions. In order to explain the microstructure induced by hot processing, the thermo-mechanical history applied to the material must be taken into account. In this study, the strain and thermal histories are obtained from Finite Element Method simulation. Thus, crystallographic texture development during hot extrusion of ODS ferritic steels is simulated using a Visco-Plastic Self-Consistent (VPSC) model. By comparing the texture predictions with the experimental observations, it is shown that self-consistent model reproduces the extrusion texture, α-fiber, very well in the case of monotonic loading. However, for complexes strain path observed during HE, VPSC results differ from the experimental deformation texture.
136
Abstract: Deformation behavior of porous aluminum alloys with aligned unidirectional pores through equal-channel angular extrusion (ECAE) was investigated. The porous aluminum alloys were fabricated by dipping pure aluminum pipes into semi-solid slurry base metal. The pipes did not detach from the base metal even through the ECAE process. Comparing the sample dimension of pores before and after ECAE process, the amount of decrease in a dimension of pores was 19.4% in this study. The Vickers hardness increased by work hardening. Especially, the hardness value of area where plastic flow arose increased significantly. These results show that we can improve the mechanical properties with maintenance of the porous structure and measure the amount of the sample deformation quantitatively.
148
Abstract: The objective of this study is to evaluate how the inclusion sizes influence the damage value and the maximum hydrostatic stress during multi-pass dry drawing process. It was well known that non-metallic inclusions can lead to material fracture during metal forming process, and be harmful to the quality of the final product. In multi-pass dry wire drawing, the temperature rise during deformation greatly decreases the quality of final product. In this study, the pass schedule in which initial diameter of 3.55 mm is reduced to final diameter of 2.115 mm was isothermally designed for the high carbon content steel. Spherical non-metallic inclusion of Al2O3 is located in the center of a steel rod. Influences of inclusion size, 5 μm, 10 μm, 20 μm and 50 μm in initial diameter 3.55 mm on ductile damage was investigated by FE-simulation in which material fracture was estimated using normalized Cockcroft and Latham criterion.
155
Abstract: A significant factor in the cost of industrial machinery for precision forging is the maximum load required to fully forge the final shape of components. Typically in a precision forging process, the required load increases greatly towards the end of the stroke. This study focuses on reducing the final sharp increase in load encountered in a typical closed die forging setup. A technique of reducing the peak load in the forging of gears is proposed, named the Peripheral Relief (PR) method. A gear forging tool set has been designed and manufactured. A number of experimental trials have been performed using model materials to investigate the force reduction technique. An efficient and simplified FE model has been developed to evaluate the effects of the PR method. The experimental load characteristics are compared to the simulated results. The method has been found, both numerically and experimentally, to significantly reduce the peak load encountered at the end of the forging stroke compared to current closed die forging techniques.
165