Key Engineering Materials
Vols. 629-630
Vols. 629-630
Key Engineering Materials
Vol. 628
Vol. 628
Key Engineering Materials
Vol. 627
Vol. 627
Key Engineering Materials
Vol. 626
Vol. 626
Key Engineering Materials
Vol. 625
Vol. 625
Key Engineering Materials
Vol. 624
Vol. 624
Key Engineering Materials
Vols. 622-623
Vols. 622-623
Key Engineering Materials
Vol. 621
Vol. 621
Key Engineering Materials
Vol. 620
Vol. 620
Key Engineering Materials
Vol. 619
Vol. 619
Key Engineering Materials
Vol. 618
Vol. 618
Key Engineering Materials
Vol. 617
Vol. 617
Key Engineering Materials
Vol. 616
Vol. 616
Key Engineering Materials Vols. 622-623
Paper Title Page
Abstract: A jack-up rig or a self-elevating unit is a type of mobile platform that consists of a buoyant hull fitted with a number of movable legs, capable of raising its hull over the surface of the sea. The buoyant hull enables transportation of the unit and all attached machinery to a desired location. Once on location the hull is raised to the required elevation above the sea surface on its legs supported by the sea bed. The legs of such units may be designed to penetrate the sea bed, may be fitted with enlarged sections or footings, or may be attached to a bottom mat. Generally Jack up rigs are not self-propelled and rely on tugs or heavy lift shipsfor transportation.
Formability problems in offshore structure construction where particularly high-strength steels are used for chords and racks. Attainment of mechanical properties is not usually difficult, although procedural trials are advisable. Fatigue cracking is probably the major cause of service failure of jack-up rigs, and the use of high-strength steels, which permits higher static stress limits, can exacerbate this problem. Roll forming process is one of the most widely used processes in the world for forming metals. It can manufacture goods of the uniform cross section throughout the continuous processing. However, process analysis is very difficult because of the inherent complexity. Therefore, it is time-consuming and much money is needed for manufacturing goods. In order to overcome this difficulty, a new computational method based on the rigid-plastic finite element method is developed for the analysis of roll forming process.
322
Abstract: The high carbon steel (HCS)/low carbon steel (LCS) laminated composite made by centrifugal casting technology was subjected to hot compression tests on Gleeble 3500 thermomechanical simulator in a range of temperatures (800-1100 oC) and strain rates (0.02-10 s-1). The hot-working behavior of the laminate was characterised by analysing the flow stress-strain curves and constructing the processing map based on dynamic materials model via superimposing efficiency of power dissipation and flow instability maps. The safe and unsafe processing conditions were identified in the processing map which was validated by microstructural examinations. Banded microstructure and micro-shear cracks occurred in the unsafe domains were responsible for the flow instability, while dynamic recrystallisation in stable domains with high efficiency of power dissipation imparted a good workability to the laminate. The optimum hot-working parameters were determined to be: (i) 800-1050 oC and 0.02-0.04 s-1, (ii) 800-1045 oC and 2.5-10 s-1 and (iii) 1050-1100 oC and 0.02-2.5 s-1.
330
Abstract: Forming limit is identified to evaluate the formability of sheet metal. The in-plane limit strains of sheets are plotted in a diagram with coordinates of major strain vs. minor strain. TNW700 titanium alloy is a high temperature resistant material. The products made of TNW700 can be used in a long serving period at 500°C, short time at 700°C. In this work, the forming limit of TNW700 will be investigated in theoretical and experimental ways. The experiment to test limit strains was carried out at 750°C under different loading paths. Marciniak – Kuczynski (M-K) model was calculated with Swift constitutive equations to predict the curves of limit strains. The effect of the groove angle on forming limit is that, the same angle on both sides of centerline determines the same FLC, and the limit points shift from left side to right side. The experiment shows that, the formability of TNW700 is not excellent, and it is lower than that of TC4 and TA15 at the same condition. The comparison shows that the curve predicted by M-K model is in a good agreement with that at plane strain, however higher than that in both sides. The fractographic observation shows that the fracture mode of TNW700 is dimple rupture.
340
Abstract: A process with gas pressure up to 70MPa is introduced, which is called High Pressure Pneumatic Forming (HPPF), comparing to superplastic forming (SPF) with pressure lower than 5MPa. HPPF process can be used to form tube blank at lower temperature with high energy efficiency and also at higher strain rate than SPF. With Ti-3Al-2.5V Ti-alloy tube, the potential of HPPF was studied through experiment in the temperature range of 700~850°C. To know the formability of the Ti-alloy tube, HPPF experiments of a large expansion tube and a square cross-section tube were carried out at different temperature and pressure. The limit expansion ratio and limit radius were measured to evaluate the forming limit of Ti-3Al-2.5V tube within HPPF. The results show that the lower the pressure, the better formability and the lower efficiency. At a constant pressure, the strain rate increases exponentially with bulging time during the free bulging procedure, but decreases exponentially during the small corner calibration. Through EBSD pictures, the deformation mechanism of the corner forming process in HPPF was analyzed. Because of a nonconstant strain rate deformation state and complicated stress and strain state during HPPF, the microstructure at the transition zone of the components are also nonhomogenous, but the grains are refined to a certain extent.
Key words: HPPF, Ti-3Al-2.5V, limit expansion ratio, corner forming
347
Abstract: A servo-controlled tension-internal pressure testing machine with an optical 3D deformation analysis system (ARAMIS®, GOM) was used to measure the multiaxial plastic deformation behavior of a 590MPa high strength steel sheet for a range of strain from initial yield to fracture. Tubular specimens were fabricated from the sheet sample by roller bending and laser welding. Many linear stress paths in the first quadrant of stress space were applied to the tubular specimens to measure the forming limit curve (FLC) and forming limit stress curve (FLSC), in addition to the contours of plastic work and the directions of plastic strain rates. It was found that the shapes of the measured work contours changed with the increase of work hardening (plastic work). The observed differential work hardening (DWH) behavior was approximated by changing the material parameters and the exponent of the Yld2000-2d yield function (Barlat et al, 2003) as a function of the equivalent plastic strain. The FLC and FLSC calculated using the Marciniak-Kuczyński-type (M-K) approach with the DWH model were in good agreement with the measurement.
353
Abstract: Hydro-mechanical forming of Al sheet was investigated in the present study in order to fabricate automotive part having a complicated shape using Al 5052 alloy with a conventional formability which has been known to be quite lower compared to deep drawing steels. We have designed the hydro-mechanical forming in which Al sheet was drawn to a kind of preform step following gas blow forming for final accurate geometry. In order to judge a formability enhancement of Al sheet in terms of forming process, model geometry came from a practical automotive part which had quite depth with complicated curvatures, which was proven that a single sheet forming could not gave a successful part. Experimentally, we succeeded to make the model part with accurate dimension. The optimum forming conditions for respective forming steps were considered most important technical features of this hydro-mechanical. Also, the effort to avoid detrimental microstructure evolutions was given and discussed for a practical application.
359
Abstract: In the architecture and construction sector the trend for individualization is often expressed in complex-shaped freeform buildings. Due to missing universal and mature construction methods for freeform buildings, they are usually realized with customized solutions that often include massive, material-consuming substructures, while the visible skin has neither structural nor functional properties. In this context a new concept for self-supporting lightweight structures for the realization of free-form surfaces and the production of the corresponding components has recently been proposed. Taking into account the large part dimensions and the varying part geometries in this application a flexible production chain based on incremental sheet forming has been developed and optimized. It has been validated by producing six-sided large-scale pyramids in 140 similar variants which were assembled to a self-supporting free-form demonstrator. Two-point incremental sheet forming (TPIF) was used with a universal partial supporting tool with the goal to produce all variants without dedicated tooling. Although the majority of pyramids was produced successfully with the applied TPIF strategy, there was a small number of parts with a very asymmetric shape that showed severe buckling in the side walls. For a detailed analysis of this observation the asymmetry was quantified using a wall angle ratio. Subsequently, a single-point incremental sheet forming (SPIF) strategy was successfully applied as an approach to avoid buckling. The results confirm the assumption that the circumferential expansion in SPIF suppresses buckling due to tensile stresses in the side walls, whereas the circumferential compression in TPIF triggers buckling due to the compressive stresses in the side walls.
367
Abstract: The present paper proposes a comparative study in order to determine the springback in single point incremental forming process. Using the Ls-Dyna software the process was simulated for one piece in frustum of pyramid shape. In the end of the explicit dynamic analysis, it was run, using the same software, an implicit analysis to determine the springback. For this comparison study we selected four different shell formulations. The results obtained in this simulation were compared with those obtained experimentally for the same part. The experimental research was conducted on a robot and, on the opposite side of the machined surface, an Aramis measuring optical system was placed to allow the online determination of deformations, displacements and thinning of material. Also, using this system, the springback was determined at the end of forming process. The closest values were obtained when using fully integrated formulation with thickness-stretch with 11 integration points on material thickness.
375
Abstract: The problem of obtaining sound parts by Incremental Sheet Forming is still a relevant issue, despite the numerous efforts spent in improving the toolpath planning of the deforming punch in order to compensate for the dimensional and geometrical part errors related to springback and punch movement. Usually, the toolpath generation strategy takes into account the variation of the toolpath itself for obtaining the desired final part with reduced geometrical errors.
In the present paper, a correction algorithm is used to iteratively correct the part geometry on the basis of the measured parts and on the calculation of the error defined as the difference between the actual and the nominal part geometries. In practice, the part geometry is used to generate a first trial toolpath, and the form error distribution of the resulting part is used for modifying the nominal part geometry and, then, generating a new, improved toolpath. This procedure gets iterated until the error distribution becomes less than a specified value, corresponding to the desired part tolerance. The correction algorithm was implemented in software and used with the results of FEM simulations. In particular, with few iterations it was possible to reduce the geometrical error to less than 0.4 mm in the Incremental Sheet Forming process of an Al asymmetric part, with a resulting accuracy good enough for both prototyping and production processes.
382
Abstract: An effect of tool rotation direction on forming limit in friction stir incremental forming was studied. A 3-axes NC milling machine and a hemispherical tool which with a diameter of 6 mm made of high speed steel was used for forming. The thickness of commercial A5052-H34 aluminum sheet was 0.5 mm. The forming tool was moved from the outside to inside in a pitch of 0.5 mm spirally, and the sheets were formed into frustum of pyramid shape. Formability evaluated by minimum wall angle of the pyramid was investigated by changing a tool rotation rate, tool feed rate and tool path direction. When the tool paths were clockwise and counter clockwise, they were defined to “advancing direction” and “retreating direction” as well as in friction stir welding, respectively. From the experimental results, forming limits by both rotation directions of advancing and retreating were almost the same, however, the range of formable working conditions in advancing direction was slightly wider than that in retreating direction. Evaluating the forming limits in relative velocity between the tool surface and the sheet, no difference of forming limit was obtained between forming in advancing direction and retreating directions.
390