Cosserat Elastoplastic Finite Elements for Masonry Structures

Article Preview

Abstract:

A Finite Elements formulation previously developed for Cosserat elastic plates, has been extended herein to the elastoplastic framework. Material non-linearities are taken into account through the implementation of a backward-Euler closest-point-projection algorithm, for which the definition of non-smooth yield loci and non-associated plastic potentials and evolution laws is made possible. An existing homogenized elastic constitutive model and a set of yield criteria for the out-of-plane behaviour of block-masonry are implemented in the code and their validity is discussed based on the comparison with Discrete Elements simulations. The comparison is carried out in both the static and the dynamic regime.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-138

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Salerno and G. de Felice, Continuum modeling of periodic brickwork, Int. J. Solids Struct., vol. 46, no. 5, p.1251–1267, Mar. (2009).

DOI: 10.1016/j.ijsolstr.2008.10.034

Google Scholar

[2] A. Pau and P. Trovalusci, Block masonry as equivalent micropolar continua: the role of relative rotations, Acta Mech., vol. 223, no. 7, p.1455–1471, May (2012).

DOI: 10.1007/s00707-012-0662-8

Google Scholar

[3] P. Trovalusci and A. Pau, Derivation of microstructured continua from lattice systems via principle of virtual works: the case of masonry-like materials as micropolar, second gradient and classical continua, Acta Mech., vol. 225, no. 1, p.157–177, Aug. (2013).

DOI: 10.1007/s00707-013-0936-9

Google Scholar

[4] J. Sulem and H. Mühlhaus, A continuum model for periodic two-dimensional block structures, Mech. Cohesive Frict. Mater., vol. 2, no. March 1996, p.31–46, (1997).

DOI: 10.1002/(sici)1099-1484(199701)2:1<31::aid-cfm24>3.0.co;2-o

Google Scholar

[5] I. Stefanou, J. Sulem, and I. Vardoulakis, Three-dimensional Cosserat homogenization of masonry structures: elasticity, Acta Geotech., vol. 3, no. 1, p.71–83, Feb. (2008).

DOI: 10.1007/s11440-007-0051-y

Google Scholar

[6] M. Godio, Etude théorique et numérique du comportement dynamique tridimensionnel des structures en maçonnerie, MSc Thesis ENPC, (2012).

Google Scholar

[7] J. Simo, J. G. Kennedy, and S. Gonvindjee, Non-smooth multisurface plasticity and viscoplasticity. Loading/unloading conditions and numerical algorithms, Int. J. Numer. Methods Eng., vol. 26, no. June 1987, p.2161–2185, (1988).

DOI: 10.1002/nme.1620261003

Google Scholar

[8] R. de Borst, Simulation of strain localization: a reappraisal of the Cosserat continuum, Eng. Comput., vol. 8, no. 4, p.317–332, (1991).

DOI: 10.1108/eb023842

Google Scholar

[9] D. Addessi, A 2D Cosserat finite element based on a damage-plastic model for brittle materials, Comput. Struct., vol. 135, p.20–31, Apr. (2014).

DOI: 10.1016/j.compstruc.2014.01.003

Google Scholar

[10] P. Trovalusci and R. Masiani, Material symmetries of micropolar continua equivalent to lattices, Int. J. Solids Struct., (1999).

DOI: 10.1016/s0020-7683(98)00073-0

Google Scholar

[11] P. Trovalusci and R. Masiani, Non-linear micropolar and classical continua for anisotropic discontinuous materials, Int. J. Solids Struct., vol. 40, no. 5, p.1281–1297, Mar. (2003).

DOI: 10.1016/s0020-7683(02)00584-x

Google Scholar

[12] D. Addessi, E. Sacco, and A. Paolone, Cosserat model for periodic masonry deduced by nonlinear homogenization, Eur. J. Mech. - A/Solids, vol. 29, no. 4, p.724–737, Jul. (2010).

DOI: 10.1016/j.euromechsol.2010.03.001

Google Scholar

[13] D. Addessi and E. Sacco, A multi-scale enriched model for the analysis of masonry panels, Int. J. Solids Struct., vol. 49, no. 6, p.865–880, Mar. (2012).

DOI: 10.1016/j.ijsolstr.2011.12.004

Google Scholar

[14] D. Baraldi, E. Reccia, A. Cazzani, and A. Cecchi, Comparative Analysis of Numerical Discrete and Finite Element Models: the Case of in-Plane Loaded Periodic Brickwork, Compos. Mech. Comput. Appl. An Int. J., vol. 4, no. 4, p.319–344, (2013).

DOI: 10.1615/compmechcomputapplintj.v4.i4.40

Google Scholar

[15] E. Reccia, A. Cazzani, and A. Cecchi, FEM-DEM Modeling for Out-of-plane Loaded Masonry Panels: A Limit Analysis Approach, Open Civ. Eng. J., p.231–238, (2012).

DOI: 10.2174/1874149501206010231

Google Scholar

[16] K. Sab, J. Dallot, and A. Cecchi, Determination of the overall yield strength domain of out-of-plane loaded brick masonry, Int. J. Multiscale Comput. Eng., (2007).

DOI: 10.1615/intjmultcompeng.v5.i2.20

Google Scholar

[17] Itasca Consulting Group, 3DEC 5. 0., Minneapolis, (2013).

Google Scholar

[18] P. Cundall, Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks, Int. J. Rock Mech. Min. …, vol. 25, no. 3, p.107–116, (1988).

DOI: 10.1016/0148-9062(88)92293-0

Google Scholar

[19] J. V. Lemos, Discrete Element Modeling of Masonry Structures, Int. J. Archit. Herit., vol. 1, no. 2, p.190–213, May (2007).

Google Scholar