[1]
Wang WH, The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog.Mater. Sci. 2012; 57,487-656.
DOI: 10.1016/j.pmatsci.2011.07.001
Google Scholar
[2]
Schuh C, Hufnagel T, Ramamurty U, Mechanical behavior of amorphous alloys. Acta Mater 2007;55,4067-4109.
DOI: 10.1016/j.actamat.2007.01.052
Google Scholar
[3]
Chen MW, A brief overview of bulk metallic glasses, NPG Asia Mater. 2011,3,82-90.
DOI: 10.1038/asiamat.2011.30
Google Scholar
[4]
Spaepen F, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 1977, 25, 407-415.
DOI: 10.1016/0001-6160(77)90232-2
Google Scholar
[5]
Steif PS, Spaepen F, Hutchinson JW, Strain localization in amorphous metals. Acta Metall. 1982, 30, 447-455.
DOI: 10.1016/0001-6160(82)90225-5
Google Scholar
[6]
Dai LH, Shear banding in bulk metallic glasses, in: Dodd B, Bai YL(Eds.), Adiabatic shear localization: Frontiers and advances, Second ed. Elsevier, London, 2012 pp.311-361.
DOI: 10.1016/b978-0-08-097781-2.00008-3
Google Scholar
[7]
Chen Y, Jiang MQ, Dai LH, Collective evolution dynamic of multiple shear bands in bulk metallic glasses. 2013, Int. J. Plasticity. Article in press.
DOI: 10.1016/j.ijplas.2013.03.010
Google Scholar
[8]
Argon AS, Plastic deformation in metallic glasses. Acta Metall. 1979, 27, 47-58.
Google Scholar
[9]
Falk ML, Langer JS, Dynamics of viscoplastic deformation in amorphous solids. 1998, Phys. Rev. E 57,7192-7205.
DOI: 10.1103/physreve.57.7192
Google Scholar
[10]
Sun BA, Yu HB, Jiao W. Bai HY, Zhao DQ, Wang WH, Plasticity of ductile metallic glasses: A self-organized critical state. 2010, Phys. Rev. Lett. 105,035501.
DOI: 10.1103/physrevlett.109.189904
Google Scholar
[11]
Zhao P, Li J, Wang Y. Heterogeneously randomized STZ model of metallic glasses: softening and extreme value statistics during deformation. Int. J. Plasticity, 2012, 40, 1-22.
DOI: 10.1016/j.ijplas.2012.06.007
Google Scholar
[12]
Wright WJ, Hufangel TC, Nix WD, Free volume coalescence and void formation in shear bands in metallic glass. J. Appl. Phys. 2003 93, 1432-1437.
DOI: 10.1063/1.1531212
Google Scholar
[13]
Huang R, Suo Z, Prevost JH, Inhomogeneous deformation in metallic glasses. J. Mech. Phys. Solids 2002 50, 1011-1027.
DOI: 10.1016/s0022-5096(01)00115-6
Google Scholar
[14]
Dai LH, Yan M, Liu LF, Bai YL, Adiabatic shear banding instability in bulk metallic glasses. Appl. Phys. Lett. 2005 87, 141916.
DOI: 10.1063/1.2067691
Google Scholar
[15]
Zhang HW, Subhash G, Maiti S, Local heating and viscosity drop during shear band evolution in bulk metallic glasses under quasistatic loading. J. Appl. Phys. 2007 102, 043519.
DOI: 10.1063/1.2771043
Google Scholar
[16]
Wright WJ, Saha R, Nix WD, Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass, Mater. Trans. 2007 42, 642.
Google Scholar
[17]
Chen HM, Huang JC, Song SX, Nieh TG, Jang JSC, Flow serration and shear-band propagation in bulk metallic glasses, Appl. Phys. Lett. 2009 94, 141914.
DOI: 10.1063/1.3117508
Google Scholar
[18]
Wright WJ, Samale MW, Hufnagel TC, LeBlanc MM, Florando JN, Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass. Acta Mater. 2009 57, 4639-4648.
DOI: 10.1016/j.actamat.2009.06.013
Google Scholar
[19]
Vinogradov A. On shear band velocity and the detectability of acoustic emission in metallic glasses. Scripta Mater. 2010 63, 89-92.
DOI: 10.1016/j.scriptamat.2010.03.023
Google Scholar
[20]
Matsumoto R, Miyazaki N, The critical length of shear bands in metallic glass. Scripta Mater. 2008 59, 107-110.
DOI: 10.1016/j.scriptamat.2008.02.038
Google Scholar
[21]
Georgarakis K et al., Shear band melting and serrated flow in metallic glasses. Appl. Phys. Lett. 2008 93, 031907.
DOI: 10.1063/1.2956666
Google Scholar
[22]
González S, Chen N, Zhang QS, Louzguine-Luzgin DV, Perepezko JH, Inoue A, Effect of shear bands initiated in the pre-yield region on the deformation behaviour of Zr-based metallic glasses. Scripta Mater. 2011 64, 713-716.
DOI: 10.1016/j.scriptamat.2010.12.025
Google Scholar
[23]
Yang B, Riester L, Nieh TG, Strain hardening and recovery in a bulk metallic glass under nanoindentation. Scripta Mater. 2006 54, 1277-1280.
DOI: 10.1016/j.scriptamat.2005.12.049
Google Scholar
[24]
Wang L, Lu ZP, Nieh TG, Onset of yielding and shear band nucleation in an Au-based bulk metallic glass. Scripta Mater. 2011 65, 759-762.
DOI: 10.1016/j.scriptamat.2011.07.022
Google Scholar
[25]
Li JX, Shan GB, Gao KW, Qiao LJ, Chu WY, In situ SEM study of formation and growth of shear bands and microcracks in bulk metallic glasses. Mater. Sci. Engng. A. 2003 354, 337-343.
DOI: 10.1016/s0921-5093(03)00036-4
Google Scholar
[26]
Wu XL, Guo YZ, Wei Q, Wang WH, Prevalence of shear banding in compression of Zr41Ti14Cu12.5Ni10Be22.5 pillars as small as 150nm in diameter. Acta Mater. 2009 57, 3562-3571.
DOI: 10.1016/j.actamat.2009.04.013
Google Scholar
[27]
Wang XD, Bednarcik J, Saksl K, Franz H, Cao QP, Jiang JZ, Tensile behavior of bulk metallic glasses by in situ x-ray diffraction. Appl. Phys. Lett. 2007 91, 081913.
DOI: 10.1063/1.2773945
Google Scholar
[28]
Réthoré J, Hild F, Roux S, Shear-band capturing using a multiscale extended digital image correlation technique. Comput. Methods Appl. Mech. Engng. 2007 196, 5016-5030.
DOI: 10.1016/j.cma.2007.06.019
Google Scholar
[29]
Bouzakher B, Benameur T, Sidhom H, IR thermographic observation and shear bands plasticity analysis in Fe-based metallic glass. J. Alloys Compos. 2009 483, 676-681.
DOI: 10.1016/j.jallcom.2008.07.222
Google Scholar
[30]
Liu LF, Dai LH, Bai YL, Wei BC, Initiation and propagation of shear bands in Zr-based bulk metallic glass under quasi-static and dynamic shear loadings. J. Non-Crystalline Solids 2005 351, 3259-3270.
DOI: 10.1016/j.jnoncrysol.2005.07.030
Google Scholar