p.171
p.178
p.182
p.187
p.193
p.199
p.205
p.211
p.217
Fracture Prediction Simulation for Crystalline Polymer Using Homogenized Molecular Chain Plasticity and Craze Evolution Models
Abstract:
The fracture of ductile polymers occurs on the boundary between the molecular chain-oriented and non-oriented regions after the neck propagation. This behavior is caused by the concentration of craze that is a microscopic damage typically observed in polymers. In addition, it is known that the ductility of polymers decreases both at a high and a low strain rates in comparison with that at a middle one. In this paper, FE simulations are carried out for a crystalline polymer subjected to the tensile load at some strain rates by use of a homogenized molecular chain plasticity model and a craze evolution equation based on the chemical kinetics. Furthermore, failure criteria are proposed from an experiment on fibril strength. A fracture prediction based on the craze accumulation and the failure of fibrils is demonstrated applying the criteria to the numerical results. It is indicated that the fracture occurs at a smaller strain under a high and a low strain rate conditions than under a middle one.
Info:
Periodical:
Pages:
193-198
Citation:
Online since:
August 2014
Authors:
Keywords:
Price:
Сopyright:
© 2015 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: