The Effects of Nanoparticles of Silica and Alumina on Flow Ability and Compressive Strength of Cementitious Composites

Article Preview

Abstract:

In this study the effects of adding silica and alumina nanoparticles on flow ability and compressive strength of cementitious composites based on Portland cement were investigated. In the first stage, the rheological behavior of different samples containing nanosilica, nanoalumina and polypropylene, polyvinyl alcohol and polyethylene fibers were evaluated. With increasing of nanoparticles in fresh samples, the slump flow diameter reduced. Fibers reduced the flow ability of the samples and viscosity increased. With increasing of the micro silica particles to cement ratio from 2/1 to 2/2, the slump flow diameter increased. By adding silica and alumina nanoparticles up to 3% and 2% respectively, the compressive strength increased and after decreased. Samples containing silica nanoparticles and fibers had the highest compressive strength.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-127

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Nazari, S. Riahi, Al2O3 nanoparticles in concrete and different curing media, Energy and Buildings, 43, 2011, 1480-1488‏.

DOI: 10.1016/j.enbuild.2011.02.018

Google Scholar

[2] Y. Qing, Z. Zenan, K. Deyu, C. Rongshen, Influence of nano-SiO2 addition on properties of hardened cementpaste as compared with silica fume, Construction and Building Materials, 21, 2007, 539-545.

DOI: 10.1016/j.conbuildmat.2005.09.001

Google Scholar

[3] G. Li, Properties of high-volume fly ash concrete incorporating nano-SiO2, Cement and Concrete Research, 34, 2004, 1043-1049.

DOI: 10.1016/j.cemconres.2003.11.013

Google Scholar

[4] H. Li, H. g. Xiao, J. Yuan, J. Ou, Microstructure of cement mortar with nano-particles, Composites: Part B, 35, 2004, 185-189.

DOI: 10.1016/s1359-8368(03)00052-0

Google Scholar

[5] T. Li., Preliminary study on the water permeability and microstructure ofconcrete incorporating nano-SiO2, Cement and Concrete Research, 35, 2005, 1943-(1947).

DOI: 10.1016/j.cemconres.2005.07.004

Google Scholar

[6] A. Nazari, S. Riahi, The effects of SiO2 nanoparticles on physical and mechanical propertiesof high strength compacting concrete, Composites: Part B, 42, 2011, 570-578.

DOI: 10.1016/j.compositesb.2010.09.025

Google Scholar

[7] B. W. Jo, C. H. Kim, G. H. Tae, and J. B. Park, Characteristics of cement mortar with nano-SiO2 particles, Construction and Building Materials, 21, 2007, 1351-1355.

DOI: 10.1016/j.conbuildmat.2005.12.020

Google Scholar

[8] M. Collepardi, J. O. Olagot, R. Troli, F. Simonelli, S. Collepardi, Combination of silica fume, Fly ash and Amorphous Nano-silica in Superplasticized High Performance Concretes, Enco, Engineering Concrete, Ponzano Veneto, Italy.

DOI: 10.14359/13273

Google Scholar

[9] T. Meng, Y. Y. b, X. Qian, S. Zhan, K. Qian, Effect of nano-TiO2 on the mechanical properties of cement mortar, Construction and Building Materials, 29, 2012, 241–245.

DOI: 10.1016/j.conbuildmat.2011.10.047

Google Scholar

[10] W. Y. Kuo, J. S. Huang, C. H. Lin, Effects of organo-modified montmorillonite on strengths and permeability ofcement mortars, Cement and Concrete Research, 36, 2006, 886 – 895.

DOI: 10.1016/j.cemconres.2005.11.013

Google Scholar

[11] J. Chen, S. C. Kou, C. S. Poon, Hydration and properties of nano-TiO2 blended cement composites, Cement & Concrete Composites, 34, 2012, 642–649.

DOI: 10.1016/j.cemconcomp.2012.02.009

Google Scholar

[12] F. Sanchez, K. Sobolev, Nanotechnology in concrete – A review, Construction and Building Materials, 24, 2010, 2060-(2071).

DOI: 10.1016/j.conbuildmat.2010.03.014

Google Scholar

[13] M.S. Morsy, S.H. Alsayed, M. Aqel, Hybrid effect of carbon nanotube and nano-clay on physico-mechanicalproperties of cement mortar, Construction and Building Materials, 25, 2011, 145–149.

DOI: 10.1016/j.conbuildmat.2010.06.046

Google Scholar

[14] L. Raki, J. Beaudoin, R. Alizadeh, J. Makar, T. Sato, Cement and Concrete Nanoscience and Nanotechnology, Materials, 3, 2010, 918-942.

DOI: 10.3390/ma3020918

Google Scholar

[15] D. Abdullah, T.R. Pitt Ford, S. Papaioannou, J. Nicholson, F. McDonald, An evaluation of accelerated Portland cement as a restorative material, Biomaterials, 23, 2002, 4001-4010.

DOI: 10.1016/s0142-9612(02)00147-3

Google Scholar

[16] E. Antunes Bortoluzzi, N. Juárez Broon, M. Antonio Hungaro Duarte, A.C.C. de Oliveira Demarchi, C. Monteiro Bramante, The Use of a Setting Accelerator and Its Effect on pH and Calcium Ion Release of Mineral Trioxide Aggregate and White Portland Cement, Journal of Endodontics, 32, 2006, 1194-1197.

DOI: 10.1016/j.joen.2006.07.018

Google Scholar

[17] C. -C. Chen, C. -C. Ho, C. -H. David Chen, W. -C. Wang, S. -J. Ding, In Vitro Bioactivity and Biocompatibility of Dicalcium Silicate Cements for Endodontic Use, Journal of Endodontics, 35, 2009, 1554-1557.

DOI: 10.1016/j.joen.2009.08.006

Google Scholar

[18] C.A.H. de Morais, N. Bernardineli, R.B. Garcia, M.A.H. Duarte, D.M.Z. Guerisoli, Evaluation of tissue response to MTA and Portland cement with iodoform, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 102, 2006, 417-421.

DOI: 10.1016/j.tripleo.2005.09.028

Google Scholar

[19] M.G. Gandolfi, F. Perut, G. Ciapetti, R. Mongiorgi, C. Prati, New Portland Cement–based Materials for Endodontics Mixed with Articaine Solution: A Study of Cellular Response, Journal of Endodontics, 34, 2008, 39-44.

DOI: 10.1016/j.joen.2007.09.001

Google Scholar

[20] A.L. Gomes Cornélio, L.P. Salles, M. Campos da Paz, J.A. Cirelli, J.M. Guerreiro-Tanomaru, M. Tanomaru Filho, Cytotoxicity of Portland Cement with Different Radiopacifying Agents: A Cell Death Study, Journal of Endodontics, 37, 2011, 203-210.

DOI: 10.1016/j.joen.2010.11.017

Google Scholar

[21] Y. -C. Hwang, D. -H. Kim, I. -N. Hwang, S. -J. Song, Y. -J. Park, J. -T. Koh, H. -H. Son, W. -M. Oh, Chemical Constitution, Physical Properties, and Biocompatibility of Experimentally Manufactured Portland Cement, Journal of Endodontics, 37, 2011, 58-62.

DOI: 10.1016/j.joen.2010.09.004

Google Scholar

[22] I. Islam, H. Kheng Chng, A.U. Jin Yap, Comparison of the Physical and Mechanical Properties of MTA and Portland Cement, Journal of Endodontics, 32, 2006, 193-197.

DOI: 10.1016/j.joen.2005.10.043

Google Scholar

[23] T. Komabayashi, L.S.W. Spångberg, Comparative Analysis of the Particle Size and Shape of Commercially Available Mineral Trioxide Aggregates and Portland Cement: A Study with a Flow Particle Image Analyzer, Journal of Endodontics, 34, 2008, 94-98.

DOI: 10.1016/j.joen.2007.10.013

Google Scholar

[24] K. -S. Min, H. -I. Kim, H. -J. Park, S. -H. Pi, C. -U. Hong, E. -C. Kim, Human Pulp Cells Response to Portland Cement In Vitro, Journal of Endodontics, 33, 2007, 163-166.

DOI: 10.1016/j.joen.2006.07.022

Google Scholar

[25] D.A. Ribeiro, M.A.H. Duarte, M.A. Matsumoto, M.E.A. Marques, D.M.F. Salvadori, Biocompatibility In Vitro Tests of Mineral Trioxide Aggregate and Regular and White Portland Cements, Journal of Endodontics, 31 (2005) 605-607.

DOI: 10.1097/01.don.0000153842.06657.e2

Google Scholar

[26] S. Shahi, S. Rahimi, H.R. Yavari, H. Mokhtari, L. Roshangar, M.M. Abasi, S. Sattari, M. Abdolrahimi, Effect of Mineral Trioxide Aggregates and Portland Cements on Inflammatory Cells, Journal of Endodontics, 36, 2010, 899-903.

DOI: 10.1016/j.joen.2010.01.001

Google Scholar

[27] R. Viapiana, J.M. Guerreiro-Tanomaru, M.A. Hungaro-Duarte, M. Tanomaru-Filho, J. Camilleri, Chemical characterization and bioactivity of epoxy resin and Portland cement-based sealers with niobium and zirconium oxide radiopacifiers, Dental Materials.

DOI: 10.1016/j.dental.2014.05.007

Google Scholar

[28] K.B. Wiltbank, S.A. Schwartz, W.G. Schindler, Effect of Selected Accelerants on the Physical Properties of Mineral Trioxide Aggregate and Portland Cement, Journal of Endodontics, 33, 2007, 1235-1238.

DOI: 10.1016/j.joen.2007.06.016

Google Scholar

[29] N. Wongkornchaowalit, V. Lertchirakarn, Setting Time and Flowability of Accelerated Portland Cement Mixed with Polycarboxylate Superplasticizer, Journal of Endodontics, 37, 2011, 387-389.

DOI: 10.1016/j.joen.2010.11.039

Google Scholar

[30] M. D. Lepech, V. C. Li, Water permeability of engineered cementitious composites, Cement & Concrete Composites, 31, 2009, 744-753.

DOI: 10.1016/j.cemconcomp.2009.07.002

Google Scholar

[31] C. K.Y. Leung, Y. N. Cheung, J. Zhang, Fatigue enhancement of concrete beam with ECC layer, Cement and Concrete Research, 37, 2007, 743-750.

DOI: 10.1016/j.cemconres.2007.01.015

Google Scholar

[32] M. Şahmaran, V. C. Li, De-icing salt scaling resistance of mechanically loaded engineeredcementitious composites, Cement and Concrete Research, 37, 2007, 1035-1046.

DOI: 10.1016/j.cemconres.2007.04.001

Google Scholar

[33] A. Spagnoli, A micromechanical lattice model to describe the fracture behaviour ofengineered cementitious composites, Computational Materials Science, 46, 2009, 7-14.

DOI: 10.1016/j.commatsci.2009.01.021

Google Scholar

[34] M. Wu, B. Johannesson, M. Geiker, A review: Self-healing in cementitious materials and engineeredcementitious composite as a self-healing material, Construction and Building Materials, 28, 2012, 571-583.

DOI: 10.1016/j.conbuildmat.2011.08.086

Google Scholar

[35] C. Panganayi, H. Ogata, K. Hattori, Effect of plate thickness on crack propagation characteristics of engineered cementitious composites, Asian Journal of Applied Sciences, 4, 2011, 542-547.

DOI: 10.3923/ajaps.2011.542.547

Google Scholar