[1]
A. Nazari, S. Riahi, Al2O3 nanoparticles in concrete and different curing media, Energy and Buildings, 43, 2011, 1480-1488.
DOI: 10.1016/j.enbuild.2011.02.018
Google Scholar
[2]
Y. Qing, Z. Zenan, K. Deyu, C. Rongshen, Influence of nano-SiO2 addition on properties of hardened cementpaste as compared with silica fume, Construction and Building Materials, 21, 2007, 539-545.
DOI: 10.1016/j.conbuildmat.2005.09.001
Google Scholar
[3]
G. Li, Properties of high-volume fly ash concrete incorporating nano-SiO2, Cement and Concrete Research, 34, 2004, 1043-1049.
DOI: 10.1016/j.cemconres.2003.11.013
Google Scholar
[4]
H. Li, H. g. Xiao, J. Yuan, J. Ou, Microstructure of cement mortar with nano-particles, Composites: Part B, 35, 2004, 185-189.
DOI: 10.1016/s1359-8368(03)00052-0
Google Scholar
[5]
T. Li., Preliminary study on the water permeability and microstructure ofconcrete incorporating nano-SiO2, Cement and Concrete Research, 35, 2005, 1943-(1947).
DOI: 10.1016/j.cemconres.2005.07.004
Google Scholar
[6]
A. Nazari, S. Riahi, The effects of SiO2 nanoparticles on physical and mechanical propertiesof high strength compacting concrete, Composites: Part B, 42, 2011, 570-578.
DOI: 10.1016/j.compositesb.2010.09.025
Google Scholar
[7]
B. W. Jo, C. H. Kim, G. H. Tae, and J. B. Park, Characteristics of cement mortar with nano-SiO2 particles, Construction and Building Materials, 21, 2007, 1351-1355.
DOI: 10.1016/j.conbuildmat.2005.12.020
Google Scholar
[8]
M. Collepardi, J. O. Olagot, R. Troli, F. Simonelli, S. Collepardi, Combination of silica fume, Fly ash and Amorphous Nano-silica in Superplasticized High Performance Concretes, Enco, Engineering Concrete, Ponzano Veneto, Italy.
DOI: 10.14359/13273
Google Scholar
[9]
T. Meng, Y. Y. b, X. Qian, S. Zhan, K. Qian, Effect of nano-TiO2 on the mechanical properties of cement mortar, Construction and Building Materials, 29, 2012, 241–245.
DOI: 10.1016/j.conbuildmat.2011.10.047
Google Scholar
[10]
W. Y. Kuo, J. S. Huang, C. H. Lin, Effects of organo-modified montmorillonite on strengths and permeability ofcement mortars, Cement and Concrete Research, 36, 2006, 886 – 895.
DOI: 10.1016/j.cemconres.2005.11.013
Google Scholar
[11]
J. Chen, S. C. Kou, C. S. Poon, Hydration and properties of nano-TiO2 blended cement composites, Cement & Concrete Composites, 34, 2012, 642–649.
DOI: 10.1016/j.cemconcomp.2012.02.009
Google Scholar
[12]
F. Sanchez, K. Sobolev, Nanotechnology in concrete – A review, Construction and Building Materials, 24, 2010, 2060-(2071).
DOI: 10.1016/j.conbuildmat.2010.03.014
Google Scholar
[13]
M.S. Morsy, S.H. Alsayed, M. Aqel, Hybrid effect of carbon nanotube and nano-clay on physico-mechanicalproperties of cement mortar, Construction and Building Materials, 25, 2011, 145–149.
DOI: 10.1016/j.conbuildmat.2010.06.046
Google Scholar
[14]
L. Raki, J. Beaudoin, R. Alizadeh, J. Makar, T. Sato, Cement and Concrete Nanoscience and Nanotechnology, Materials, 3, 2010, 918-942.
DOI: 10.3390/ma3020918
Google Scholar
[15]
D. Abdullah, T.R. Pitt Ford, S. Papaioannou, J. Nicholson, F. McDonald, An evaluation of accelerated Portland cement as a restorative material, Biomaterials, 23, 2002, 4001-4010.
DOI: 10.1016/s0142-9612(02)00147-3
Google Scholar
[16]
E. Antunes Bortoluzzi, N. Juárez Broon, M. Antonio Hungaro Duarte, A.C.C. de Oliveira Demarchi, C. Monteiro Bramante, The Use of a Setting Accelerator and Its Effect on pH and Calcium Ion Release of Mineral Trioxide Aggregate and White Portland Cement, Journal of Endodontics, 32, 2006, 1194-1197.
DOI: 10.1016/j.joen.2006.07.018
Google Scholar
[17]
C. -C. Chen, C. -C. Ho, C. -H. David Chen, W. -C. Wang, S. -J. Ding, In Vitro Bioactivity and Biocompatibility of Dicalcium Silicate Cements for Endodontic Use, Journal of Endodontics, 35, 2009, 1554-1557.
DOI: 10.1016/j.joen.2009.08.006
Google Scholar
[18]
C.A.H. de Morais, N. Bernardineli, R.B. Garcia, M.A.H. Duarte, D.M.Z. Guerisoli, Evaluation of tissue response to MTA and Portland cement with iodoform, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 102, 2006, 417-421.
DOI: 10.1016/j.tripleo.2005.09.028
Google Scholar
[19]
M.G. Gandolfi, F. Perut, G. Ciapetti, R. Mongiorgi, C. Prati, New Portland Cement–based Materials for Endodontics Mixed with Articaine Solution: A Study of Cellular Response, Journal of Endodontics, 34, 2008, 39-44.
DOI: 10.1016/j.joen.2007.09.001
Google Scholar
[20]
A.L. Gomes Cornélio, L.P. Salles, M. Campos da Paz, J.A. Cirelli, J.M. Guerreiro-Tanomaru, M. Tanomaru Filho, Cytotoxicity of Portland Cement with Different Radiopacifying Agents: A Cell Death Study, Journal of Endodontics, 37, 2011, 203-210.
DOI: 10.1016/j.joen.2010.11.017
Google Scholar
[21]
Y. -C. Hwang, D. -H. Kim, I. -N. Hwang, S. -J. Song, Y. -J. Park, J. -T. Koh, H. -H. Son, W. -M. Oh, Chemical Constitution, Physical Properties, and Biocompatibility of Experimentally Manufactured Portland Cement, Journal of Endodontics, 37, 2011, 58-62.
DOI: 10.1016/j.joen.2010.09.004
Google Scholar
[22]
I. Islam, H. Kheng Chng, A.U. Jin Yap, Comparison of the Physical and Mechanical Properties of MTA and Portland Cement, Journal of Endodontics, 32, 2006, 193-197.
DOI: 10.1016/j.joen.2005.10.043
Google Scholar
[23]
T. Komabayashi, L.S.W. Spångberg, Comparative Analysis of the Particle Size and Shape of Commercially Available Mineral Trioxide Aggregates and Portland Cement: A Study with a Flow Particle Image Analyzer, Journal of Endodontics, 34, 2008, 94-98.
DOI: 10.1016/j.joen.2007.10.013
Google Scholar
[24]
K. -S. Min, H. -I. Kim, H. -J. Park, S. -H. Pi, C. -U. Hong, E. -C. Kim, Human Pulp Cells Response to Portland Cement In Vitro, Journal of Endodontics, 33, 2007, 163-166.
DOI: 10.1016/j.joen.2006.07.022
Google Scholar
[25]
D.A. Ribeiro, M.A.H. Duarte, M.A. Matsumoto, M.E.A. Marques, D.M.F. Salvadori, Biocompatibility In Vitro Tests of Mineral Trioxide Aggregate and Regular and White Portland Cements, Journal of Endodontics, 31 (2005) 605-607.
DOI: 10.1097/01.don.0000153842.06657.e2
Google Scholar
[26]
S. Shahi, S. Rahimi, H.R. Yavari, H. Mokhtari, L. Roshangar, M.M. Abasi, S. Sattari, M. Abdolrahimi, Effect of Mineral Trioxide Aggregates and Portland Cements on Inflammatory Cells, Journal of Endodontics, 36, 2010, 899-903.
DOI: 10.1016/j.joen.2010.01.001
Google Scholar
[27]
R. Viapiana, J.M. Guerreiro-Tanomaru, M.A. Hungaro-Duarte, M. Tanomaru-Filho, J. Camilleri, Chemical characterization and bioactivity of epoxy resin and Portland cement-based sealers with niobium and zirconium oxide radiopacifiers, Dental Materials.
DOI: 10.1016/j.dental.2014.05.007
Google Scholar
[28]
K.B. Wiltbank, S.A. Schwartz, W.G. Schindler, Effect of Selected Accelerants on the Physical Properties of Mineral Trioxide Aggregate and Portland Cement, Journal of Endodontics, 33, 2007, 1235-1238.
DOI: 10.1016/j.joen.2007.06.016
Google Scholar
[29]
N. Wongkornchaowalit, V. Lertchirakarn, Setting Time and Flowability of Accelerated Portland Cement Mixed with Polycarboxylate Superplasticizer, Journal of Endodontics, 37, 2011, 387-389.
DOI: 10.1016/j.joen.2010.11.039
Google Scholar
[30]
M. D. Lepech, V. C. Li, Water permeability of engineered cementitious composites, Cement & Concrete Composites, 31, 2009, 744-753.
DOI: 10.1016/j.cemconcomp.2009.07.002
Google Scholar
[31]
C. K.Y. Leung, Y. N. Cheung, J. Zhang, Fatigue enhancement of concrete beam with ECC layer, Cement and Concrete Research, 37, 2007, 743-750.
DOI: 10.1016/j.cemconres.2007.01.015
Google Scholar
[32]
M. Şahmaran, V. C. Li, De-icing salt scaling resistance of mechanically loaded engineeredcementitious composites, Cement and Concrete Research, 37, 2007, 1035-1046.
DOI: 10.1016/j.cemconres.2007.04.001
Google Scholar
[33]
A. Spagnoli, A micromechanical lattice model to describe the fracture behaviour ofengineered cementitious composites, Computational Materials Science, 46, 2009, 7-14.
DOI: 10.1016/j.commatsci.2009.01.021
Google Scholar
[34]
M. Wu, B. Johannesson, M. Geiker, A review: Self-healing in cementitious materials and engineeredcementitious composite as a self-healing material, Construction and Building Materials, 28, 2012, 571-583.
DOI: 10.1016/j.conbuildmat.2011.08.086
Google Scholar
[35]
C. Panganayi, H. Ogata, K. Hattori, Effect of plate thickness on crack propagation characteristics of engineered cementitious composites, Asian Journal of Applied Sciences, 4, 2011, 542-547.
DOI: 10.3923/ajaps.2011.542.547
Google Scholar