Preparation of a Poly(Lactic Acid)/Montmorillonite Nanocomposite

Article Preview

Abstract:

Poly (L-lactic acid)/organically modified montmorillonite (PLLA/OMMT) nanocomposites were fabricated by a solution intercalation method. OMMT, modified with quaternary alkylammonium ion, was prepared by alkyltrialkoxysilane. The differential scanning calorimetry measurement revealed that the crystallization temperatures of PLLA/OMMT nanocomposites were at around 110 °C regardless of the existence of OMMT or the weight fraction of them. X-ray diffraction patterns suggested that the (001) diffraction was around 2θ = 2.5°. The TEM image showed variously expanded interlayer galleries of OMMT and partially exfoliated silicate layer unit in the matrix. Board-shaped specimens for mechanical property tests were fabricated by compression-molding at 190 °C (including 30 min annealing at 110 °C). The flexural modulus of the nanocomposites increased with increasing content of OMMT. Vickers hardness of the nanocomposites were almost same independent on weight fraction of OMMT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-155

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Fukushima, D. Tabuani, M. Arena, M. Gennari, G. Camino, Effect of clay type and loading on themal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites, React Funct Polym. 73 (2013) 540–549.

DOI: 10.1016/j.reactfunctpolym.2013.01.003

Google Scholar

[2] J. Wootthikanokkhan, T. Cheachun, N. Sombatsompop, S. Thumsorn, N. Kaabbuathong, N. Wongta, J. Wong-On, S. Isarankura Na Ayutthaya, A. Kositchaiyong, Crystallization and Thermomechanical Properties of PLA Composites: Effects of Additive Types and Heat Treatment, J Appl Polym Sci. 129 (2013).

DOI: 10.1002/app.38715

Google Scholar

[3] K. Chrissafis, E. Pavlidou, K. M. Paraskevopoulos, T. Beslikas, N. Nianias, D. Bikiaris, Enhancing mechanical and thermal properties of PLLA ligaments with fumed silica nanoparticles and montmorillonite, J Therm Anal Calorim. 105 (2011) 313–323.

DOI: 10.1007/s10973-010-1168-z

Google Scholar

[4] L. E. Claes, Mechanical Characterization of Biodegradable Implants, Clin Mater. 10 (1992) 41–46.

Google Scholar

[5] Z. Shen, G. P. Simon, Y. B. Cheng, Comparison of solution intercalation and melt intercalation of polymer-clay nanocomposites, Polymer. 43 (2002) 4251–4260.

DOI: 10.1016/s0032-3861(02)00230-6

Google Scholar

[6] N. Tenn, N. Follain, J. Soulestin, R. Crétois, S. Bourbigot, S. Marais, Effect of Nanoclay Hydration on Barrier Properties of PLA/Montmorillonite Based Nanocomposites, J Phys Chem C. 117 (2013) 12117–12135.

DOI: 10.1021/jp401546t

Google Scholar

[7] M. S. Beauvalet, F. F. Mota, R. M. D. Soares, R. V. B. Oliveira, Influence of glycerol on morphology and properties of polylactide/montmorillonite nanocomposites, Polym Bull. 70 (2013) 1863–1873.

DOI: 10.1007/s00289-012-0884-x

Google Scholar

[8] Prakalathan K., S Mohanty, S. K. Nayak, Polylactide/Transition Metal Ion Modified Montmorillonite Nanocomposite-A Critical Evaluation of Mechanical Performance and Thermal Stability, Polym Compos. 33 (2012) 1848–1857.

DOI: 10.1002/pc.22317

Google Scholar

[9] K. Fukushima, A. Fina, F. Geobaldo, A. Venturello, G. Camino, Properties of poly(lactic acid) nanocomposites based on montmorillonite, sepiolite and zirconium phosphonate, Express Polym Lett. 6 (2012) 914–926.

DOI: 10.3144/expresspolymlett.2012.97

Google Scholar

[10] H. Chen, J. Chen, J. Chen, J. Yang, T. Huang, N. Zhang, Y. Wang, Effect of organic montmorillonite on cold crystallization and hydrolytic degradation of poly(L-lactide), Polym Degrad Stab. 97 (2012) 2273–2283.

DOI: 10.1016/j.polymdegradstab.2012.07.037

Google Scholar

[11] B. Wang, T. Wan, W. Zeng, Rheological and Thermal Properties of Polylactide/Organic Montmorillonite Nanocomposites, J Appl Polym Sci. 125 (2012) E364–E371.

DOI: 10.1002/app.36770

Google Scholar

[12] A. González, A. Dasari, B. Herrero, E. Plancher, J. Santarén, Fire retardancy behavior of PLA based nanocomposites, Polym Degrad Stab. 97 (2012) 248–256.

DOI: 10.1016/j.polymdegradstab.2011.12.021

Google Scholar

[13] Y. Di, S. Iannace, E. D. Maio, L. Nicolais, Poly(lactic acid)/Organoclay Nanocomposites: Thermal, Rheological Properties and Foam Processing, J Polym Sci B Polym Phys. 43 (2005) 689–698.

DOI: 10.1002/polb.20366

Google Scholar

[14] N. Ogata, G. Jimenez, H. Kawai, T. Ogihara, Structure and Thermal/Mechanical Properties of Poly(l-lactide)-Clay Blend, J Polym Sci B Polym Phys. 35 (1997) 389–396.

DOI: 10.1002/(sici)1099-0488(19970130)35:2<389::aid-polb14>3.0.co;2-e

Google Scholar

[15] A.R. Mclauchlin, N.L. Thomas, Preparation and thermal characterization of poly(lactic acid) nanocomposites prepared from organoclay based on an amphoteric surfactant, Polym Degrad Stab. 94 (2009) 868–872.

DOI: 10.1016/j.polymdegradstab.2009.01.012

Google Scholar

[16] V. Krikorian, D. J. Pochan, Poly (L-Lactic Acid)/Layered Silicate Nanocomposite: Fabrication, Characterization, and Properties, Chem Mater. 15 (2003) 4317–4324.

DOI: 10.1021/cm034369+

Google Scholar

[17] T. D. Fornes, D. R. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories, Polymer. 44 (2003) 4993–5013.

DOI: 10.1016/s0032-3861(03)00471-3

Google Scholar