[1]
K. Fukushima, D. Tabuani, M. Arena, M. Gennari, G. Camino, Effect of clay type and loading on themal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites, React Funct Polym. 73 (2013) 540–549.
DOI: 10.1016/j.reactfunctpolym.2013.01.003
Google Scholar
[2]
J. Wootthikanokkhan, T. Cheachun, N. Sombatsompop, S. Thumsorn, N. Kaabbuathong, N. Wongta, J. Wong-On, S. Isarankura Na Ayutthaya, A. Kositchaiyong, Crystallization and Thermomechanical Properties of PLA Composites: Effects of Additive Types and Heat Treatment, J Appl Polym Sci. 129 (2013).
DOI: 10.1002/app.38715
Google Scholar
[3]
K. Chrissafis, E. Pavlidou, K. M. Paraskevopoulos, T. Beslikas, N. Nianias, D. Bikiaris, Enhancing mechanical and thermal properties of PLLA ligaments with fumed silica nanoparticles and montmorillonite, J Therm Anal Calorim. 105 (2011) 313–323.
DOI: 10.1007/s10973-010-1168-z
Google Scholar
[4]
L. E. Claes, Mechanical Characterization of Biodegradable Implants, Clin Mater. 10 (1992) 41–46.
Google Scholar
[5]
Z. Shen, G. P. Simon, Y. B. Cheng, Comparison of solution intercalation and melt intercalation of polymer-clay nanocomposites, Polymer. 43 (2002) 4251–4260.
DOI: 10.1016/s0032-3861(02)00230-6
Google Scholar
[6]
N. Tenn, N. Follain, J. Soulestin, R. Crétois, S. Bourbigot, S. Marais, Effect of Nanoclay Hydration on Barrier Properties of PLA/Montmorillonite Based Nanocomposites, J Phys Chem C. 117 (2013) 12117–12135.
DOI: 10.1021/jp401546t
Google Scholar
[7]
M. S. Beauvalet, F. F. Mota, R. M. D. Soares, R. V. B. Oliveira, Influence of glycerol on morphology and properties of polylactide/montmorillonite nanocomposites, Polym Bull. 70 (2013) 1863–1873.
DOI: 10.1007/s00289-012-0884-x
Google Scholar
[8]
Prakalathan K., S Mohanty, S. K. Nayak, Polylactide/Transition Metal Ion Modified Montmorillonite Nanocomposite-A Critical Evaluation of Mechanical Performance and Thermal Stability, Polym Compos. 33 (2012) 1848–1857.
DOI: 10.1002/pc.22317
Google Scholar
[9]
K. Fukushima, A. Fina, F. Geobaldo, A. Venturello, G. Camino, Properties of poly(lactic acid) nanocomposites based on montmorillonite, sepiolite and zirconium phosphonate, Express Polym Lett. 6 (2012) 914–926.
DOI: 10.3144/expresspolymlett.2012.97
Google Scholar
[10]
H. Chen, J. Chen, J. Chen, J. Yang, T. Huang, N. Zhang, Y. Wang, Effect of organic montmorillonite on cold crystallization and hydrolytic degradation of poly(L-lactide), Polym Degrad Stab. 97 (2012) 2273–2283.
DOI: 10.1016/j.polymdegradstab.2012.07.037
Google Scholar
[11]
B. Wang, T. Wan, W. Zeng, Rheological and Thermal Properties of Polylactide/Organic Montmorillonite Nanocomposites, J Appl Polym Sci. 125 (2012) E364–E371.
DOI: 10.1002/app.36770
Google Scholar
[12]
A. González, A. Dasari, B. Herrero, E. Plancher, J. Santarén, Fire retardancy behavior of PLA based nanocomposites, Polym Degrad Stab. 97 (2012) 248–256.
DOI: 10.1016/j.polymdegradstab.2011.12.021
Google Scholar
[13]
Y. Di, S. Iannace, E. D. Maio, L. Nicolais, Poly(lactic acid)/Organoclay Nanocomposites: Thermal, Rheological Properties and Foam Processing, J Polym Sci B Polym Phys. 43 (2005) 689–698.
DOI: 10.1002/polb.20366
Google Scholar
[14]
N. Ogata, G. Jimenez, H. Kawai, T. Ogihara, Structure and Thermal/Mechanical Properties of Poly(l-lactide)-Clay Blend, J Polym Sci B Polym Phys. 35 (1997) 389–396.
DOI: 10.1002/(sici)1099-0488(19970130)35:2<389::aid-polb14>3.0.co;2-e
Google Scholar
[15]
A.R. Mclauchlin, N.L. Thomas, Preparation and thermal characterization of poly(lactic acid) nanocomposites prepared from organoclay based on an amphoteric surfactant, Polym Degrad Stab. 94 (2009) 868–872.
DOI: 10.1016/j.polymdegradstab.2009.01.012
Google Scholar
[16]
V. Krikorian, D. J. Pochan, Poly (L-Lactic Acid)/Layered Silicate Nanocomposite: Fabrication, Characterization, and Properties, Chem Mater. 15 (2003) 4317–4324.
DOI: 10.1021/cm034369+
Google Scholar
[17]
T. D. Fornes, D. R. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories, Polymer. 44 (2003) 4993–5013.
DOI: 10.1016/s0032-3861(03)00471-3
Google Scholar