Fibers Obtaining and Characterization Using Poly (Lactic-co-Glycolic Acid) and Poly (Isoprene) Containing Hydroxyapatite and α TCP Calcium Phosphate by Electrospinning Method

Article Preview

Abstract:

Natural bone is formed by a complex composite, essentially constituted of biological apatite and fibers of collagen. The combination of materials such as biopolymers and bioceramics may result in an interesting material for application in bone tissue regeneration. This work aims to obtain polymeric fibers containing Poly (Lactic-co-Glycolic Acid) and Poly (Isoprene), supplemented with hydroxyapatite (HA) and α-tricalcium phosphate (TCP). The thermal, mechanical and morphological properties of the fibers were evaluated . Even presenting a larger diameter, fibers with α-TCP presented lower elastic modulus than fibers with HA. Both fibers presented similar thermal behavior, with glass transition temperature in the same range that the one presented by raw PLGA and similar degradation temperatures. Is safe to say that the presence of ceramics in the fibers have a potential for further investigations aiming bone tissue regeneration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-178

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zuo, F. Yang, J.G. Joop, Y. Li, J.A. Jansen, Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Acta Biomaterialia. 6(2010) 1238–1247.

DOI: 10.1016/j.actbio.2009.10.036

Google Scholar

[2] I. Demnati, et al, Hydroxyapatite coating on titanium by a low energy plasma spraying mini-gun. Surface & Coatings Technology. 206 (2012) 2346–2353.

DOI: 10.1016/j.surfcoat.2011.10.025

Google Scholar

[3] X. Miao, et al, Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites. Materials Letters. 59 (2005) 4000-4005.

DOI: 10.1016/j.matlet.2005.07.062

Google Scholar

[4] D.V.V. Rani, Osteointegration of titanium implant is sensitive to specific nano structure morphology. 8 (2012) 1976-(1989).

Google Scholar

[5] M.P. Stevens, Polymer Chemistry: An Introduction, Oxford University Press, New York, (1999).

Google Scholar

[6] C.C. Chen, J.Y. Chueh, H. Tseng, H.M. Huang, S.Y. Lee, S. Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials. 24 (2003)1167-1173.

DOI: 10.1016/s0142-9612(02)00466-0

Google Scholar

[7] Y. Lipatov, Polymer blends and interpenetrating polymer networks at the interface with solids. Progress in Polymer Science. 27 (2002) 1721-1801.

DOI: 10.1016/s0079-6700(02)00021-7

Google Scholar

[8] K.Y. Lee, L. Jeong, Y.O. Kang, S.J. Lee, W.H. Park, Electrospinning of polysaccharides for regenerative medicine. Advanced Drug Delivery Reviews. 61(2009) 1020-1032.

DOI: 10.1016/j.addr.2009.07.006

Google Scholar

[9] F. Chen, F. Q. L, Tang, Y.J. Zhu, K.W. Wang, M.L. Zhang, W.Y. Zhai, J. Chang, Hydroxyapatite nanorods/poly(vinyl pyrolidone) composite nanofibers, arrays and three-dimensional fabrics: Electrospun preparation and transformation to hydroxyapatite nanostructures. ActaBiomaterialia. 6 (2010).

DOI: 10.1016/j.actbio.2010.02.015

Google Scholar

[10] D.R. Marques, L.A. Santos, V. C. Sousa, P.R.S. Sanches. P, Brazil. Patent 0000221010682444. (2011).

Google Scholar

[11] S. Joschek, B. Nies, R. Krotz. A, GoKpferich, Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials. 21(16) (2000) 1645-1658.

DOI: 10.1016/s0142-9612(00)00036-3

Google Scholar

[12] J.L.M. Machado, Desenvolvimento de cimento ósseo de fosfato de cálcio para o crescimento de tecidos, Dissertação de mestrado, Federal University of Rio Grande do Sul, (2007).

Google Scholar

[13] S.H. Rhee, Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials 23 (2002) 1147–1152.

DOI: 10.1016/s0142-9612(01)00229-0

Google Scholar

[14] R.M. Tromme, L.A. Santos, C.P. Bergmann, Alternative technique for hydroxyapatite coatings. Surface & Coatings Technology. 20 (2007) 9587–9593.

DOI: 10.1016/j.surfcoat.2007.04.028

Google Scholar

[15] G. Mestres. G, C. Le Van. C, M.P. Ginebra, Silicon-stabilized a-tricalcium phosphate and its use in a calcium phosphate cement: Characterization and cell response. Acta Biomaterialia 8 (2012) 1169–1179.

DOI: 10.1016/j.actbio.2011.11.021

Google Scholar

[16] J. Zhao. Rietveld refinement of hydroxyapatite, tricalcium phosphate and biphasic materials prepared by solution combustion method. Ceramics International 40 (2014): 3379–3388.

DOI: 10.1016/j.ceramint.2013.09.094

Google Scholar

[17] D. R. Marques et al, Analysis of Poly(Lactic-co-Glycolic Acid)/Poly(Isoprene) Polymeric Blend for Application as Biomaterial. Polímeros. 23 (2005) 579-584.

DOI: 10.4322/polimeros.2013.099

Google Scholar

[18] W.A. R Neto, et al, Influence of the microstructure and mechanical strength of nanofibers of biodegradable polymers with hydroxyapatite in stem cells growth. Electrospinning, characterization and cell viability, Polymer Degradation and Stability. 97(2012).

DOI: 10.1016/j.polymdegradstab.2012.03.048

Google Scholar