Collagen/Polyurethane-Coated Bioactive Glass: Early Achievements towards the Modelling of Healthy and Osteoporotic Bone

Article Preview

Abstract:

The development of suitable strategies to treat ageing-related pathologies has attracted the interest of researchers in view of the increasing life expectancy in the next decades. Osteoporosis is a worldwide disease with high prevalence in humans older than 50 that dramatically increases the risk of bone fractures with associated disabilities. The innovative use of new biomaterials as models of the healthy and osteoporotic bone matrix would be a new strategy to study the physiological conditions associated with osteoporosis and the connection between microenvironment changes and the bone ageing process. In this work, experimental bioactive glass substrates were coated with various polymer formulations in order to impart tunable surface features to the whole systems, which will act as models of the healthy and aged bone tissue once they have been colonized by cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

184-189

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Arcos, A.R. Boccaccini, M. Bohner, A. Díez-Pérez, M. Epple, E. Gómez-Barrena, A. Herrera, J.A. Planell, L. Rodríguez-Mañas, M. Vallet-Reg, The relevance of biomaterials to the prevention and treatment of osteoporosis, Acta Biomater. 10 (2014).

DOI: 10.1016/j.actbio.2014.01.004

Google Scholar

[2] J.A. Buckwalter, M.J. Glimscher, R. R. Cooper, R. Recker, Bone Biology, J Bone Joint Surg Am. 77 (1995) 1256-1275.

DOI: 10.2106/00004623-199508000-00019

Google Scholar

[3] K. Rezwan, Q.Z. Chen, J.J. Blaker, A. R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials. 27 (2006) 3413-3431.

DOI: 10.1016/j.biomaterials.2006.01.039

Google Scholar

[4] J. R. Porter, T. T. Ruckh, K.C. Popat, Bone Tissue Engineering: A Review in Bone Biomimetics and Drug Delivery Strategies, Biotechnol. Prog. 25 (2009), 1539-1560.

DOI: 10.1002/btpr.246

Google Scholar

[5] F. Baino, C. Vitale-Brovarone, Three-dimensional glass-derived scaffolds for bone tissue engineering: Current trends and forecasts for the future, J. Biomed. Mater. Res. A. 97A (2011) 514-535.

DOI: 10.1002/jbm.a.33072

Google Scholar

[6] C. Vitale-Brovarone, F. Baino, E. Verne, High strength bioactive glass-ceramic scaffolds for bone regeneration, J Mater Sci: Mater Med. 20 (2009) 643–653.

DOI: 10.1007/s10856-008-3605-0

Google Scholar

[7] F. Baino, M. Ferraris, O. Bretcanu, E. Verné, C. Vitale-Brovarone, Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution, J. Biomater. Appl. 27 (2013) 872–890.

DOI: 10.1177/0885328211429193

Google Scholar

[8] C. Renghini, A. Giuliani, S. Mazzoni, F. Brun, E. Larsson, F. Baino, C. Vitale-Brovarone, Microstructural characterization and in vitro bioactivity of porous glass-ceramic scaffolds for bone regeneration by synchrotron radiation X-ray microtomography, J. Eur. Cera. Soc. 33 (2013).

DOI: 10.1016/j.jeurceramsoc.2012.10.016

Google Scholar

[9] A.M. Ferreira, P. Gentile, S. Sartori 1, C. Pagliano, C. Cabrele, V. Chiono, G. Ciardelli, Biomimetic soluble collagen purified from bones, Biotechnol. J. 7 (2012) 1386–1394.

DOI: 10.1002/biot.201200184

Google Scholar

[10] S. Sartori, A. Rechichi, G. Vozzi, M. D'Acunto, E. Heine, P. Giusti, G. Ciardelli, Surface modification of a synthetic polyurethane by plasma glow discharge: Preparation and characterization of bioactive monolayers, React. Funct. Polym. 68 (2008).

DOI: 10.1016/j.reactfunctpolym.2007.12.002

Google Scholar

[11] F. L. Mi, Y. C. Tan, H. F. Liang, H. W. Sung, In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant, Biomaterials 23 (2002) 181–191.

DOI: 10.1016/s0142-9612(01)00094-1

Google Scholar