Physico-Chemical Characteristics of TiO2 Derived Nanotube Synthesized by the Hydrothermal Process as a Bioceramic

Article Preview

Abstract:

Titania (TiO2) nanotube gaining predominance as a bioceramic due to its excellent features such as high specific surface area and exhibiting appropriate cellular response. At present, we showed a conversion from titania nanoparticle to nanotube by hydrothermal treatment with 10M soduim hydroxide and 1M HCl solutions at 150°C over 48h. Then the sample annealed at various temperatures. Results indicate the reaction temperature is a main factor in determining the aspect ratio of the tubes. FESEM image conformed the synthesis of nanotube. In vitro study by using 150 °C-synthesized nanotube calcined at different temperatures are also presented establishing the potential of nanotubes in biomedical applications

You might also be interested in these eBooks

Info:

Periodical:

Pages:

198-201

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijma, Nature, 1991; 354 : 56-8.

Google Scholar

[2] A. Nakashira, T. Kobu, C. Numako, Inorganic Chemistry, 2010; 49 : 5845-52.

Google Scholar

[3] C.C. Tsai, H. Teng, Chemistry of Materials, 2004; 16 : 4352-58.

Google Scholar

[4] S. Xu Chen, E. Yang, Z. Yi Fan, Chinese Science Bulletin, 2007; 52 : 2491-95.

Google Scholar

[5] C. C Tsai, H. Teng, Chemistry of Materials, 2006; 18 : 367-72.

Google Scholar

[6] H.H. Qu, S.L. Lo, Separation and Purification Technology, 2007; 58 : 179-91.

Google Scholar

[7] L.M. Nicolic', M. Maletin, P. Ferreira, P. Vilariho, Processing and Application of Ceramics, 2008; 2 : 109-14.

Google Scholar

[8] A. Kukovecz, M. Hodes, E. Horvth, G. Radnczi, Z. Konya, I. Kiricsi, J. Physical Chemistry B, 2005; 109 : 17781-83.

Google Scholar

[9] K.S. Brammer, S. Oh, C.J. Cobb, L.M. Bjursten, H.V.D. Heyde, S. Sin, Acta Biomaterialia, 2009; 5 : 3215-23.

Google Scholar

[10] K.S. Moon, S.H. Yu, J.M. Bae, S. Oh, J. Nanomaterials, 2012, 24 : 1-8.

Google Scholar

[11] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Advanced Materials, 1999; 11 : 1307-11.

DOI: 10.1002/(sici)1521-4095(199910)11:15<1307::aid-adma1307>3.0.co;2-h

Google Scholar

[12] H.K. Seo, G.S. Kim, S.G. Ansari, Y.S. Kim, H. Sh. Shin, K.H. Shim, E.K. Suh, Solar Energy Materials & Solar Cells, 2008; 92 : 1533-39.

DOI: 10.1016/j.solmat.2008.06.019

Google Scholar

[13] A.W. Tan, B. Pinngguan-Murphy, R. Ahmad, S.A. Akbar, Ceramics International, 2012; 38 : 4421-35.

Google Scholar