Bioceramic Materials Show Reduced Pathological Biofilm Formation

Article Preview

Abstract:

The aim of the present work was to assess the surface ability of three bioceramic materials (A: alumina BIOLOX®forte; B: Si3N4; C: alumina matrix composite BIOLOX®delta) to inhibit bacterial biofilm formation. For this purpose, ceramic disks at standardized roughness (Ra = 0,25 μm) were used as test materials while commercial polystyrene was considered as control. Two biofilm-producing bacterial strains (S. epidermidis ATCC14990, Escherichia coli ATCC25922) were used for experiments. The viable biomass was assessed by the metabolic MTT assay after 24h incubation. Morphological data regarding biofilms structure were obtained by scanning electron microscopy. In general, results revealed that all bioceramics materials were significantly less colonized compared to polystyrene. The degree of biofilm formation onto bioceramics ranged between about 30 to 60% less than the polystyrene control. Moreover, some differences were noticed by comparing the three bioceramics inhibition ratio: bioceramic A showed significanlty less S. epidermidis biofilm formation (p<0.005) compared to B and C that showed similar performance. Conversely, no difference were noted for E. coli biofilm amount for A, B and C. In conclusion, the tested materials showed capability to reduce biofilm formation to a different extent depending on the tested bacterial strains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

448-453

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Rimondini, M. Fini, R. Giardino, The microbial infection of biomaterials: A challenge for clinicians and researchers. A short review, J. Appl. Biomater. Biomech. 3 (2005) 1-10.

Google Scholar

[2] C.J. Seviratne, L. Jin, L.P. Samaranayake, Biofilm lifestyle of Candida: a mini review, Oral Dis. 14 (2008) 582-590.

DOI: 10.1111/j.1601-0825.2007.01424.x

Google Scholar

[3] E.S. Darley, A.P. MacGowan, Antibiotic treatment of Gram positive bone and joint infections, J. Antimicrob. Chemother. 53 (2004) 928-2.

Google Scholar

[4] R. Metzger, H. Bonatti, R. Sawyer, Future trends in the treatment of serious Gram-positive infections, Drugs Today 45 (2009) 33-45.

DOI: 10.1358/dot.2009.45.1.1315922

Google Scholar

[5] L.A. Dessy, F. Corrias, F. Marchetti, M. Marcasciano, A.F. Armenti, M. Mazzocchi, B. Carlesimo, Implant infection after augmentation mammaplasty: a review of the literature and report of a multidrug-resistant Candida albicans infection, Aesthetic. Plast. Surg. 36 (2012).

DOI: 10.1007/s00266-011-9777-x

Google Scholar

[6] D. Rodríguez-Pardo, C. Pigrau, J. Lora-Tamayo, A. Soriano, M.D. Del Toro, J. Cobo, J. Palomino, G. Euba, M. Riera, M. Sánchez-Somolinos, N. Benito, M. Fernández-Sampedro, L. Sorli, L: Guio, J.A. Iribarren, J.M. Baraia-Etxaburu, A. Ramos, A. Bahamonde, X. Flores-Sánchez, P.S. Corona, J. Ariza, the REIPI Group for the Study of Prosthetic Infection, Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study, Clin. Microbiol. Infect. 2014; doi: 10. 1111/1469-0691. 12649.

DOI: 10.1111/1469-0691.12649

Google Scholar

[7] L. Rimondini, L. Cerroni, A. Carrassi, P. Torricelli, Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study, Int. J. Oral Maxillofac. Implants. 17 (2002) 793-8.

Google Scholar

[8] E. Verné, M. Miola, C. Vitale Brovarone, M. Cannas, S. Gatti, G. Fucale, G. Maina, A. Massé, S. Di Nunzio, Surface silver-doping of biocompatible glass to induce antibacterial properties. Part I: Massive glass, J. Mater. Sci. Mater. Med. 20 (2009).

DOI: 10.1007/s10856-008-3617-9

Google Scholar

[9] M. Miola, S. Ferraris, S. Di Nunzio, P.F. Robotti, C. Bianchi, G. Fucale, G. Maina, M. Cannas, S. Gatti, A. Massé, C. Vitale Brovarone, E. Verné E, Surface silver-doping of biocompatible glasses to induce antibacterial properties. Part II: Plasma sprayedglass-coatings, J. Mater. Sci. Mater. Med. 20 (2009).

DOI: 10.1007/s10856-008-3618-8

Google Scholar

[10] S. Ferraris, A. Venturello, M. Miola, A. Cochis, L. Rimondini, S. Spriano, Antibacterial and bioactive nanostructured titanium surfacesfor bone integration, Appl. Surf. Sci. 2014; http: /dx. doi. org/10. 1016/j. apsusc. 2014. 05. 056. In press.

DOI: 10.1016/j.apsusc.2014.05.056

Google Scholar