The Effects of Sulfate Anion Exchange on Structural Feature and Thermal Behavior of Y2(OH)5NO3nH2O Layered Hydroxide Nanosheets

Article Preview

Abstract:

Layered rare-earth hydroxide nanosheets (3-8 nm thick) of Y2(OH)5NO3·nH2O (NO3--LYH) were successfully synthesized in one step via chemical precipitation at ~4 °C and pH ~8, using yttrium nitrate and ammonium hydroxide as reagents. The interlayer NO3- was found to be free ions and can be completely replaced with SO42- to yield Y2(OH)5(SO4)0.5·nH2O (SO42--LYH). Thermal decomposition behavior of the SO42--LYH was studied in detail, and the phase and morphology evolutions upon calcination in the temperature range 500-1100 °C were also investigated. Characterizations via XRD, FE-SEM, TEM, and FT-IR found that anion exchange did not bring about any appreciable change to the 2-dimensional crystallite morphology but the basal spacing of the crystal structure shrank from ~0.884 to 0.840 nm owing to the indirect coordination of SO42- to the Y3+ ions. DTA/TG and XRD analysis found that the NO3--LYH converts to Y2O3 at ~600 °C, but the SO42--LYH decomposes to oxide at a higher temperature of ~1000 °C via monoclinic Y2O2SO4 in the range of 800-900 °C. The resultant Y2O3 particles have an average size of ~60 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

204-209

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Gándara, J. Perles, N. Snejko, et al., Angew. Chem. Int. Ed. 45 (2006) 7998-8001.

Google Scholar

[2] F.X. Geng, Y. Matsushita, R. Ma, et al., Inorg. Chem. 48 (2009) 6724-6730.

Google Scholar

[3] F.X. Geng, Y. Matsushita, R. Ma, et al., J. Am. Chem. Soc. 130 (2008) 16344-16350.

Google Scholar

[4] F.X. Geng, H. Xin, Y. Matsushita, et al., Chem. Eur. J. 14(2008) 9255-9260.

Google Scholar

[5] L.F. Hu, R. Ma, T.C. Ozawa, et al., Chem. - Asian J. 5 (2010) 248-251.

Google Scholar

[6] F.X. Geng, R. Ma, Y. Matsushita, et al., Inorg. Chem. 50 (2011) 6667-6672.

Google Scholar

[7] J.B. Liang, R. Ma, F.X. Geng, et al., Chem. Mater. 22 (2010) 6001-6007.

Google Scholar

[8] L.J. McIntyre, L.K. Jackson, A.M. Fogg, , J. Phys. Chem. Solids. 69 (2008) 1070-1074.

Google Scholar

[9] L.J. McIntyre, L.K. Jackson, A.M. Fogg, Chem. Mater. 20 (2008) 335-340.

Google Scholar

[10] S.A. Hindocha, L.J. McIntyre, A.M. Fogg, J. Solid State Chem. 182 (2009) 1070-1074.

Google Scholar

[11] L.J. McIntyre, T.J. Prior, A.M. Fogg, Chem. Mater. 22 (2010) 2635-2645.

Google Scholar

[12] Q. Zhu, J-G. Li, C.Y. Zhi, et al., Chem. Mater. 22 (2010) 4204-4213.

Google Scholar

[13] L. Poudret, T.J. Prior, L.J. McIntyre, A.M. Fogg, Chem. Mater. 20 (2008) 7447-7453.

Google Scholar

[14] K-H Lee, S-H Byeon, Eur. J. Inorg. Chem. 7 (2009) 929-936.

Google Scholar

[15] K-H Lee, S-H Byeon, , Eur. J. Inorg. Chem. 31 (2009) 4727-4732.

Google Scholar

[16] F.X. Geng, R. Ma, T. Sasaki, Acc. Chem. Res. 43 (2010) 1177.

Google Scholar

[17] X.L. Wu, J. -G. Li, J.K. Li, et al., Sci. Technol. Adv. Mater. 14 (2013) 015006-015017.

Google Scholar

[18] Q. Zhu, J. -G. Li, R. Ma, et al., J. Solid State Chem. 192(2012) 229-237.

Google Scholar

[19] Q. Zhu, J. -G. Li, X.D. Li, et al., Sci. Technol. Adv. Mater. 15 (2014) 014203.

Google Scholar

[20] Q. Zhu, J. -G. Li, et al., J. Mater. Chem. 21(2011) 6903-6908.

Google Scholar

[21] K. Nakamoto. Infrared Spectra of Inorganic & Coordination Compounds. New York: John Wiley & Sons; (1963).

Google Scholar

[22] J. A. Gadsden. Infrared Spectra of Minerals and Related Inorganic Compounds. Newton (MA): Butterworth; (1975).

Google Scholar

[23] E. Matijević, W.P. Hsu, J. Colloid Interface Sci. 118 (1987) 506-523.

Google Scholar

[24] J. -G. Li, T. Ikegami, T. Mori, Y. Yajima, J. Am. Ceram. Soc. 87 (2004) 1008-1013.

Google Scholar

[25] J. -G. Li, T. Ikegami, T. Mori, Y. Yajima, J. Mater. Res. 18(2003) 1149-1156.

Google Scholar