[1]
F.H. Liu, G.J. Xu, L. Duan, et al, Influence of B2O3 additives on microstructure and electrical properties of ZnO-Bi2O3-Sb2O3-based varistors, J. Alloys Compd. 509 (2011) L56-L58.
DOI: 10.1016/j.jallcom.2010.10.074
Google Scholar
[2]
D. Xu, X.N. Cheng, G.P. Zhao, et al, Microstructure and electrical properties of Sc2O3-doped ZnO-Bi2O3-based varistor ceramics, Ceram. Int. 37 (2011) 701-706.
DOI: 10.1016/j.ceramint.2010.09.032
Google Scholar
[3]
M. Peiteado, A.C. Caballero, Sodium impurities in ZnO-Bi2O3-Sb2O3 based varistors, Ceram. Int. 37 (2011) 819-824.
DOI: 10.1016/j.ceramint.2010.10.016
Google Scholar
[4]
J.F. Zhu, G.Q. Qi, H.B. Yang, et al, Microstructure and electrical properties of Pr6O11 doped ZnO-Bi2O3-based varistors, J. Mater. Sci. 22 (2011) 96-100.
DOI: 10.1007/s10854-010-0091-1
Google Scholar
[5]
J. Liu, J.L. He, J. Hu, et al, Statistics on the AC ageing characteristics of single grain boundaries of ZnO varistor, Mater. Chem. Phys. 125 (2011) 9-11.
DOI: 10.1016/j.matchemphys.2010.09.023
Google Scholar
[6]
T.K. Gupta, Application of zinc oxide varistor, J. Am. Ceram. Soc. 73 (1990) 1817-1840.
Google Scholar
[7]
S. Fujitsu, H. Toyoda, H. Yanagida, Origin of Zno varistor, J. Am. Ceram. Soc. 70 (1987) C71-C72.
Google Scholar
[8]
D.R. Clarke, Varistor ceramics, J. Am. Ceram. Soc. 82 (1999) 485-502.
Google Scholar
[9]
P.R. Bueno, J.A. Varela, E. Longo, SnO2, ZnO and related polycrystalline compound semiconductors: An overview and review on the voltage-dependent resistance (non-ohmic) feature, J. Eur. Ceram. Soc. 28 (2008) 505-529.
DOI: 10.1016/j.jeurceramsoc.2007.06.011
Google Scholar
[10]
Y.S. Lee, T.Y. Tseng, Phase identification and electrical-properties in ZnO-Glass varistors, J. Am. Ceram. Soc. 75 (1992) 1636-1640.
DOI: 10.1111/j.1151-2916.1992.tb04236.x
Google Scholar
[11]
C.W. Nahm, Microstructure and electrical properties of Y2O3-doped ZnO-Pr6O11-based varistor ceramics, Mater. Lett. 57 (2003) 1317-1321.
DOI: 10.1016/s0167-577x(02)00979-5
Google Scholar
[12]
K. Mukae, Zinc-oxide varistors with praseodymium oxide, Ceram. Bull. 66 (1987) 1329-1331.
Google Scholar
[13]
K. Mukae, K. Tsuda, S. Shiza, Zinc oxide praseodymium oxide elements for surge arresters, IEEE Trans Power Delivery 3 (1988) 591-598.
DOI: 10.1109/61.4296
Google Scholar
[14]
C.W. Nahm, Major Effects on impulse aging behavior of ZnO-Pr6O11-CoO-Cr2O3-Er2O3 varistor ceramics with small sintering changes, J. Am. Ceram. Soc. 93 (2010) 3056-3059.
DOI: 10.1111/j.1551-2916.2010.04027.x
Google Scholar
[15]
C.W. Nahm, Electrical behavior against current impulse in ZnO-Pr6O11-based varistor ceramics with terbium addition, Ceram. Int. 36 (2010) 1495-1501.
DOI: 10.1016/j.ceramint.2010.02.027
Google Scholar
[16]
C.W. Nahm, Influence of CoO on stability of nonlinear electrical properties and dielectric characteristics in Pr6O11-based ZnO varistor ceramics, Mater. Sci. Eng. B 133 (2006) 1-97.
DOI: 10.1016/j.mseb.2006.06.001
Google Scholar
[17]
C.W. Nahm, Microstructure and nonlinear electrical properties of ZnO-Pr6O11-CoO-Cr2O3- La2O3-based varistors, J. Mater. Sci. 40 (2005) 6307-6309.
DOI: 10.1007/s10853-005-4567-y
Google Scholar
[18]
C.W. Nahm, Al3+ doping effect on electrical and dielectric aging behavior against impulse surge in ZPCCYA-based varistors, Mater. Sci. Eng. B 170(1-3) (2010) 123-128.
DOI: 10.1016/j.mseb.2010.03.036
Google Scholar
[19]
H.H. Hng, K.M. Knowles, Microstructure and current-voltage characteristics of praseodymium- doped zinc oxide varistors containing MnO2, Sb2O3 and Co3O4, J. Mater Sci. 37 (2002) 1143-1154.
Google Scholar
[20]
H. Feng, Z.J. Peng, X.L. Fu, et al, Effect of TiO2 doping on microstructural and electrical properties of ZnO-Pr6O11-based varistor ceramics, J. Alloys Compd. 497 (2010) 304-307.
DOI: 10.1016/j.jallcom.2010.03.047
Google Scholar
[21]
Z.J. Peng, X.L. Fu, Y.X. Zang, et al, Influence of Fe2O3 doping on microstructural and electrical properties of ZnO-Pr6O11 based varistor ceramic materials, J. Alloys Compd. 508 (2010) 494-499.
DOI: 10.1016/j.jallcom.2010.08.100
Google Scholar
[22]
H. Feng, Z.J. Peng, X.L. Fu, et al, Effect of SnO2 doping on microstructural and electrical properties of ZnO-Pr6O11 based varistor ceramics, J. Alloys Compd. 509 (2011) 7175-7180.
DOI: 10.1016/j.jallcom.2011.04.042
Google Scholar
[23]
X.L. Fu, H. Feng, Z.J. Peng. Effect of Pr6O11 doping on the microstructural and electrical properties of ZnO-Pr6O11-Co3O4-TiO2 ceramic varistors. Rare Metal Materials and Engineering, 42(suppl. 1A) (2013) 72-75.
Google Scholar
[24]
B.S. Skidan, M.M. M'int, Effect of metal oxides on the microstructure of zinc ceramic, Glass Ceram. 64 (2007) 31-33.
DOI: 10.1007/s10717-007-0008-5
Google Scholar
[25]
K. Mukae, K. Tsuda, I. Nagasawa, Non-ohmic properties of ZnO-rare earth metal oxide Co3O4 ceramics. Jpn. J. Appl. Phys. 16 (1977) 1361-1368.
DOI: 10.1143/jjap.16.1361
Google Scholar
[26]
C.W. Nahm, C.S. Byoung, H.M. Byeong, Microstructure and electrical properties of Y2O3-doped ZnO-Pr6O11-based varistor ceramics, Mater. Chem. Phys. 82 (2003) 157-164.
DOI: 10.1016/s0254-0584(03)00213-x
Google Scholar