Effect of Pr6O11 Doping on the Microstructural and Electrical Properties of ZnO-Pr6O11-Co3O4-Cr2O3-SnO2 Varistors

Article Preview

Abstract:

ZnO-Pr6O11-Co3O4-Cr2O3-SnO2 varistors with different doping levels of Pr6O11 (0.25-2 mol%) were prepared at 1300 °C with conventional ceramic processing, and the effect of Pr6O11 doping on the microstructure and electrical properties of the varistor materials were investigated. The results indicated that the doped Pr6O11 basically existed at the boundary of ZnO grains in the varistor ceramics, and SnO2 might enter into the lattice of ZnO grains or precipitate in reaction with Pr6O11 into Pr2Sn2O7 at the gain boundaries particularly where there were three or more ZnO grains. The analysis of scanning electron microscopy further revealed that Pr6O11 doping would inhibit the growth of ZnO grains, resulting in decreasing ZnO grain size with increasing doping level of Pr6O11. The measured electric-field/current-density characteristics of the samples showed that the varistor voltage increased with increasing doping level of Pr6O11 when the doping level was no more than 1.5 mol%, and the nonlinear coefficient of the varistors increased with increasing doping level of Pr6O11 up to no more than 1.0 mol% in the varistors, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

308-312

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.H. Liu, G.J. Xu, L. Duan, et al, Influence of B2O3 additives on microstructure and electrical properties of ZnO-Bi2O3-Sb2O3-based varistors, J. Alloys Compd. 509 (2011) L56-L58.

DOI: 10.1016/j.jallcom.2010.10.074

Google Scholar

[2] D. Xu, X.N. Cheng, G.P. Zhao, et al, Microstructure and electrical properties of Sc2O3-doped ZnO-Bi2O3-based varistor ceramics, Ceram. Int. 37 (2011) 701-706.

DOI: 10.1016/j.ceramint.2010.09.032

Google Scholar

[3] M. Peiteado, A.C. Caballero, Sodium impurities in ZnO-Bi2O3-Sb2O3 based varistors, Ceram. Int. 37 (2011) 819-824.

DOI: 10.1016/j.ceramint.2010.10.016

Google Scholar

[4] J.F. Zhu, G.Q. Qi, H.B. Yang, et al, Microstructure and electrical properties of Pr6O11 doped ZnO-Bi2O3-based varistors, J. Mater. Sci. 22 (2011) 96-100.

DOI: 10.1007/s10854-010-0091-1

Google Scholar

[5] J. Liu, J.L. He, J. Hu, et al, Statistics on the AC ageing characteristics of single grain boundaries of ZnO varistor, Mater. Chem. Phys. 125 (2011) 9-11.

DOI: 10.1016/j.matchemphys.2010.09.023

Google Scholar

[6] T.K. Gupta, Application of zinc oxide varistor, J. Am. Ceram. Soc. 73 (1990) 1817-1840.

Google Scholar

[7] S. Fujitsu, H. Toyoda, H. Yanagida, Origin of Zno varistor, J. Am. Ceram. Soc. 70 (1987) C71-C72.

Google Scholar

[8] D.R. Clarke, Varistor ceramics, J. Am. Ceram. Soc. 82 (1999) 485-502.

Google Scholar

[9] P.R. Bueno, J.A. Varela, E. Longo, SnO2, ZnO and related polycrystalline compound semiconductors: An overview and review on the voltage-dependent resistance (non-ohmic) feature, J. Eur. Ceram. Soc. 28 (2008) 505-529.

DOI: 10.1016/j.jeurceramsoc.2007.06.011

Google Scholar

[10] Y.S. Lee, T.Y. Tseng, Phase identification and electrical-properties in ZnO-Glass varistors, J. Am. Ceram. Soc. 75 (1992) 1636-1640.

DOI: 10.1111/j.1151-2916.1992.tb04236.x

Google Scholar

[11] C.W. Nahm, Microstructure and electrical properties of Y2O3-doped ZnO-Pr6O11-based varistor ceramics, Mater. Lett. 57 (2003) 1317-1321.

DOI: 10.1016/s0167-577x(02)00979-5

Google Scholar

[12] K. Mukae, Zinc-oxide varistors with praseodymium oxide, Ceram. Bull. 66 (1987) 1329-1331.

Google Scholar

[13] K. Mukae, K. Tsuda, S. Shiza, Zinc oxide praseodymium oxide elements for surge arresters, IEEE Trans Power Delivery 3 (1988) 591-598.

DOI: 10.1109/61.4296

Google Scholar

[14] C.W. Nahm, Major Effects on impulse aging behavior of ZnO-Pr6O11-CoO-Cr2O3-Er2O3 varistor ceramics with small sintering changes, J. Am. Ceram. Soc. 93 (2010) 3056-3059.

DOI: 10.1111/j.1551-2916.2010.04027.x

Google Scholar

[15] C.W. Nahm, Electrical behavior against current impulse in ZnO-Pr6O11-based varistor ceramics with terbium addition, Ceram. Int. 36 (2010) 1495-1501.

DOI: 10.1016/j.ceramint.2010.02.027

Google Scholar

[16] C.W. Nahm, Influence of CoO on stability of nonlinear electrical properties and dielectric characteristics in Pr6O11-based ZnO varistor ceramics, Mater. Sci. Eng. B 133 (2006) 1-97.

DOI: 10.1016/j.mseb.2006.06.001

Google Scholar

[17] C.W. Nahm, Microstructure and nonlinear electrical properties of ZnO-Pr6O11-CoO-Cr2O3- La2O3-based varistors, J. Mater. Sci. 40 (2005) 6307-6309.

DOI: 10.1007/s10853-005-4567-y

Google Scholar

[18] C.W. Nahm, Al3+ doping effect on electrical and dielectric aging behavior against impulse surge in ZPCCYA-based varistors, Mater. Sci. Eng. B 170(1-3) (2010) 123-128.

DOI: 10.1016/j.mseb.2010.03.036

Google Scholar

[19] H.H. Hng, K.M. Knowles, Microstructure and current-voltage characteristics of praseodymium- doped zinc oxide varistors containing MnO2, Sb2O3 and Co3O4, J. Mater Sci. 37 (2002) 1143-1154.

Google Scholar

[20] H. Feng, Z.J. Peng, X.L. Fu, et al, Effect of TiO2 doping on microstructural and electrical properties of ZnO-Pr6O11-based varistor ceramics, J. Alloys Compd. 497 (2010) 304-307.

DOI: 10.1016/j.jallcom.2010.03.047

Google Scholar

[21] Z.J. Peng, X.L. Fu, Y.X. Zang, et al, Influence of Fe2O3 doping on microstructural and electrical properties of ZnO-Pr6O11 based varistor ceramic materials, J. Alloys Compd. 508 (2010) 494-499.

DOI: 10.1016/j.jallcom.2010.08.100

Google Scholar

[22] H. Feng, Z.J. Peng, X.L. Fu, et al, Effect of SnO2 doping on microstructural and electrical properties of ZnO-Pr6O11 based varistor ceramics, J. Alloys Compd. 509 (2011) 7175-7180.

DOI: 10.1016/j.jallcom.2011.04.042

Google Scholar

[23] X.L. Fu, H. Feng, Z.J. Peng. Effect of Pr6O11 doping on the microstructural and electrical properties of ZnO-Pr6O11-Co3O4-TiO2 ceramic varistors. Rare Metal Materials and Engineering, 42(suppl. 1A) (2013) 72-75.

Google Scholar

[24] B.S. Skidan, M.M. M'int, Effect of metal oxides on the microstructure of zinc ceramic, Glass Ceram. 64 (2007) 31-33.

DOI: 10.1007/s10717-007-0008-5

Google Scholar

[25] K. Mukae, K. Tsuda, I. Nagasawa, Non-ohmic properties of ZnO-rare earth metal oxide Co3O4 ceramics. Jpn. J. Appl. Phys. 16 (1977) 1361-1368.

DOI: 10.1143/jjap.16.1361

Google Scholar

[26] C.W. Nahm, C.S. Byoung, H.M. Byeong, Microstructure and electrical properties of Y2O3-doped ZnO-Pr6O11-based varistor ceramics, Mater. Chem. Phys. 82 (2003) 157-164.

DOI: 10.1016/s0254-0584(03)00213-x

Google Scholar