[1]
Liu Ning, Ti(C, N)-based Cermets Material, first ed., Hefei, China, (2009).
Google Scholar
[2]
W.B. Hu,L. ZHANG, Progress in Research on Ti(C, N)Materials, Materials Review. 23, (2010)29-33.
Google Scholar
[3]
Ettmayer P, Lengauer W. The story of cermets, Powder Metall Int 21, (1989)37-8.
Google Scholar
[4]
F. X LIU, Y. H HE, Present status and prospect of Ti(C, N)-based cermet, J. Powder Metallurgy Technology, 4 (2004)236-240.
Google Scholar
[5]
Melisha Naidoo. Preparation of (Ti, Ta)(C, N)by Mechanical Alloying[D]. Johannesburg, Faculty of Engineering and the Built Environment, University of Witwatersrand. August 2012: 9.
Google Scholar
[6]
Ehira M, Egami A, Mechanical properties and microstructure of submicron cermets, J. Refract Met Hard Mater, 13(1995)313-319.
DOI: 10.1016/0263-4368(95)92677-c
Google Scholar
[7]
Zackrisson J, Andrén HO. Effect of carbon content on the microstructure and mechanical properties of (Ti, W, Ta, Mo)(C, N)-(Co, Ni) cermets, J. Refract Met Hard Mater 17(1999)265-273.
DOI: 10.1016/s0263-4368(98)00074-2
Google Scholar
[8]
Zhang S. Titanium carbonitride-based cermets: processes and properties, Materials Science and Engineering. 163A(1993)141-148.
DOI: 10.1016/0921-5093(93)90588-6
Google Scholar
[9]
S.Q. Zhou,W. Zhao, W.H. Xiong, Effect of Mo and Mo2C on the Microstructure and Properties of the Cermets Based on Ti(C, N), Acta Metall. Sin, (Tngl. Lett. ). 21(3)(2008)211-219.
DOI: 10.1016/s1006-7191(08)60041-1
Google Scholar
[10]
D. Sarkar B.V. Manoj Kumar,. Fretting Wear Behavior of Ti(CN)-Based Advanced Cermets, J. Key Rngineering Materials, 264-268, (2004)1115-1118.
DOI: 10.4028/www.scientific.net/kem.264-268.1115
Google Scholar
[11]
P. Ettmayer,H. Kolaska,W. Lengauer&K. Dreyer, et al. Ti(C, N)Cermets-Metallurgy and Properties, J. Refractory Metals&Hard Materials, 13, (1995)343-351.
DOI: 10.1016/0263-4368(95)00027-g
Google Scholar
[12]
Zackrisson. J, Andren H.O. et al. Effect of carbon content on the microstructure and mechanical properties of (Ti, W, Ta, Mo)(C, N)-(Co, Ni)Cermets, J. Refractory Metals & Hard Materials, 17 (1999) 265.
DOI: 10.1016/s0263-4368(98)00074-2
Google Scholar
[13]
Q. Zh WANG, LIU Yue, Effect of TiN Content on Microstructures and Mechanical Properties of Ti(C, N)/NiCr Cermets, J. ACTA METALLURGICA SINICA , 41(11)(2005)1121-1126.
Google Scholar
[14]
Zhou Wei, Zheng Yong, Effect of Nitrogen Addition on Microstructure and Abrasive Wear Behavior of Ti(C, N)-based Cermets, J. Cemented Carbide, 29(4)(2012)197-202.
Google Scholar
[15]
Ti(C, N)-based Cermet, J. Cemented Carbide, 27(6)(2010)321-325.
Google Scholar
[16]
D. Sarkar B.V. Manoj Kumar, et al. Fretting Wear Behavior of Ti(C, N)-based Advanced Cermets, J. Key Engineering Materials, 264-268, (2004)1115-1118.
DOI: 10.4028/www.scientific.net/kem.264-268.1115
Google Scholar
[17]
T. Viatte, T. Cutard, et al. High Temperature Mechanical Properties of Ti(C, N)-Mo2C-Ni Cermets Studied by Internal Friction Measurements, Journal de Physique III, 6 (1996)743-746.
DOI: 10.1051/jp4:19968161
Google Scholar
[18]
Ostap Zgalat-Lozynskyy, Mathias Hermann, et al. Spark plasma sintering of TiCN nanopowers in non-linear heating and loading regimes, J. European Ceramic Society, 31(2011)809-813.
DOI: 10.1016/j.jeurceramsoc.2010.11.030
Google Scholar
[19]
Nygren M, Shen Z. On the preparation of bio-, nano-and structural ceramics and composites by spark plasma sintering, J. Solid State Sci, 5(2003)125-131.
DOI: 10.1016/s1293-2558(02)00086-9
Google Scholar
[20]
F. Ping, W. H Xiong, Spark Plasma Sintering Properties of Ultrafine Ti(C, N)-based Cermet, J. Wuhan University of Technology-Mater. Sci. Ed, 19(1)(2004)69-72.
DOI: 10.1007/bf02838368
Google Scholar
[21]
T. Liu, P. Feng, Research Progress of Ti(C, N)-based Cermet, Jiangsu Ceramics, 12 (6) (2005) 20-23.
Google Scholar