Synthesis and Photo-Catalytic Performance of ZnO/Graphene Composites

Article Preview

Abstract:

Zinc acetate dehydrate and Graphene oxide (GO) were employed as raw materials, the ZnO/Graphene composites were simply and quickly synthesized by solvothermal reaction at 180°C for 12 h. The phase structure and morphologies of the as-obtained composites were characterized and observed by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Using RhB solution simulated dye wastewater, the composites’ photo-catalytic performance were preliminary tested and observed with the visible light irradiation. The results indicated that the concentrations of zinc acetate and the mass ratio of zinc acetate dihydratio and graphene oxide all had an impact on the photo-degradation rate. The photo-degradation rate of the composites prepared with the concentrations of zinc acetate of 0.01 mol/L was higher than that of zinc acetate of 0.001 mol/L. The mass ratio of zinc acetate dehydratio and graphene oxide of 4:1 was higher than that of 8:1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-106

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemannt, Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 95(1995) 69-96.

Google Scholar

[2] P. A. Pekakis, N. P. Xekoukoulotakis, D. Mantzavinos, Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res. 40(2006) 1276-1286.

DOI: 10.1016/j.watres.2006.01.019

Google Scholar

[3] M. Ramya, B. Anusha, S. Kalavathy, Decolorization and biodegradation of Indigo carmine by a textile soil isolate Paenibacillus larvae. Biodegradation 19(2008) 283-291.

DOI: 10.1007/s10532-007-9134-6

Google Scholar

[4] M. M. Assadi, K. Rostami, M. Shahvali, M. Azin, Decolorization of textile wastewater by Phanerochaete chrysosporium. Desalination 141(2001) 331-336.

DOI: 10.1016/s0011-9164(01)85010-4

Google Scholar

[5] H. M. H. Gad, A. El-Hakim, A. M. Daifullah, Impact of Surface Chemistry on the Removal of Indigo Carmine Dye Using Apricot Stone Active Carbon. Adsorpt. Sci. Technol. 25(2007) 327-341.

DOI: 10.1260/026361707783432588

Google Scholar

[6] Z. Chen, S. Berciaud, C. Nuckolls, T. F. Heinz, L. E. Brus, Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano. 4(2010) 2964-2968.

DOI: 10.1021/nn1005107

Google Scholar

[7] S. P. Gubin, N. A. Kataeva, G. B. Khomutov, Promising avenues of research in nanoscience: chemistry of semiconductor nanoparticles. Russ. Chem. Bull. Int. Ed. 54(2005) 827-852.

DOI: 10.1007/s11172-005-0331-3

Google Scholar

[8] C. Tian,  Q. Zhang,  A. Wu,  M. Jiang,  Z. Liang, B. Jiang, H. Fu, Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem. Commun. 48(2012) 2858-2860.

DOI: 10.1039/c2cc16434e

Google Scholar

[9] Y. Lai, M. Meng, Y. Yu, X. Wang, T. Ding, Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance. Applied Catalysis B: Environmental. 105(2011).

DOI: 10.1016/j.apcatb.2011.04.028

Google Scholar

[10] A. G. Joshi, S. Sahai, N. Gandhi, Y. G. Radha Krishna, D. Haranath, Valence band and core-level analysis of highly luminescent ZnO nanocrystals for designing ultrafast optical sensors. Appl. Phys. Lett. 96(2010) 123102-3.

DOI: 10.1063/1.3354025

Google Scholar

[11] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, S. J. Park, UV electroluminescence emission from ZnO light-emitting diodes grown by high temperature radiofrequency sputtering. Advanced Materials. 18(2006) 2720-2724.

DOI: 10.1002/adma.200502633

Google Scholar

[12] Y. Park, S. H. Kang, W. Choi, Exfoliated and reorganized graphite oxide on titania nanoparticles as an auxiliary co-catalyst for photocatalytic solar conversion. Phys. Chem. Chem. Phys. 13(2011) 9425-9431.

DOI: 10.1039/c1cp20697d

Google Scholar

[13] G. Williams, B. Seger, P. V. Kamat, TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano 2(2008) 1487-1491.

DOI: 10.1021/nn800251f

Google Scholar

[14] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science 306(2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[15] W. S. Hummers, R. E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80 (1958) 1339-1339.

DOI: 10.1021/ja01539a017

Google Scholar