Sulfate-Ion Pillared Layered Hydroxide of Eu2(OH)4SO4·nH2O: Controlled Hydrothermal Processing, Thermal Decomposition, and Photoluminescence

Article Preview

Abstract:

Sulfate-ion pillared layered hydroxide of Eu2(OH)4SO4·nH2O (n~2, SO42--LEuH) was synthesized through controlled hydrothermal reaction, and the phase evolution of which upon calcination in the air and hydrogen was studied in detail. It was found that annealing in the air produced orthorhombic Eu2O2SO4 in the temperature range of 300-1000 °C while in flowing H2 hexagonal Eu2O2S was resulted in the 600-1000 °C range. Strong red emissions were found at 621 nm for the SO42--LEuH and 627 nm for Eu2O2S under excitation at 396 nm (the 7F0-5L6 transition of Eu3+). Improved luminescence intensity was also observed for the Eu2O2S powder calcined at a higher temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

98-102

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.L. Wu, J. -G. Li, Q. Zhu, et al., Dalton Trans. 41 (2012) 1854-1861.

Google Scholar

[2] M. Ogawa, K. Kuroda, Chem. Rev. 95 (1995) 399-438.

Google Scholar

[3] S. Bernal, J.J. Calvino, M.A. Cauqui, et al., Catal. Today 50 (1999) 175-206.

Google Scholar

[4] K.C. Zhang, Y.F. Li, Y. Liu, C. Feng, J. Magn. Magn. Mater. 360 (2014) 165-168.

Google Scholar

[5] D. Rutzinger, C. Bartsch, M. Doerr, et al., J. Solid State Chem. 183 (2010) 510-520.

Google Scholar

[6] G. Jia, Y.H. Zheng, K. Liu, et al., J. Phys. Chem. 113 (2009) 153-158.

Google Scholar

[7] X.L. Wu, J. -G. Li, D. -H. Ping, et al., J. Alloys Compd. 559 (2013) 188-195.

Google Scholar

[8] S.A. Hindocha, L.J. McIntyre, A.M. Fogg,  J. Solid State Chem. 182 (2009) 1070-1074.

Google Scholar

[9] L.J. McIntyre, L.K. Jackson, A.M. Fogg, Chem. Mater. 20 (2008) 335-340.

Google Scholar

[10] F. Gándara, J. Perles, N. Snejko, et al., Angew. Chem. Int. Ed. 45 (2006) 7998-8001.

Google Scholar

[11] X.L. Wu, J. -G. Li, J.K. Li, et al., Sci. Technol. Adv. Mat. 14 (2013) 015006.

Google Scholar

[12] Q. Zhu, J. -G. Li, C. Zhi, et al., J. Mater. Chem. 21 (2011) 6903-6908.

Google Scholar

[13] K. -H. Lee, S. -H. Byeon, Eur. J. Inorg. Chem.  31 (2009) 4727-4732.

Google Scholar

[14] Q. Zhu, J. -G. Li, C.Y. Zhi, et al., Chem. Mater. 22 (2010) 4204-4213.

Google Scholar

[15] L. Poudret, T.J. Prior, L.J. McIntyre, A.M. Fogg, Chem. Mater. 20 (2008) 7447-7453.

Google Scholar

[16] Q. Zhu, J. -G. Li, X.D. Li, et al., Sci. Technol. Adv. Mat. 15 (2014) 014203.

Google Scholar

[17] X.J. Wang, J. -G. Li, Q. Zhu, et al., Sci. Technol. Adv. Mater. 15 (2014) 014204.

Google Scholar

[18] L.C. Thompson. In Handbook on the Physics and Chemistry of Rare Earths, edited by Gschneidner K A, Jr and Eyring L R. North-holland Physics, Amsterdam, The Netherlands, 1979, Vol. 3.

Google Scholar

[19] L.V. Pieterson, M.F. Reid, R.T. Wegh, et al., Phys. Rev. B 65 (2002) 045113.

Google Scholar

[20] M. Buijs, A. Meyerink, G. Blasse, J. Lumin. 37 (1987) 9-20.

Google Scholar

[21] X.M. Zhang, J. Wang, K. Guo, et al., J. Alloys Compd. 517 (2012) 149-156.

Google Scholar

[22] J. -G. Li, X.D. Li, X.D. Sun, T. Ishigaki. J. Phys. Chem. C. 112 (2008) 11707-11716.

Google Scholar

[23] C.F. Guo, L. Luan, C.H. Chen, et al., Mater. Lett. 62 (2008) 600-602.

Google Scholar