[1]
B.L. Mordike, T. Ebert, Magnesium properties –applications–potential. Mater. Sci. Eng. A, 302 (2001), 37-45.
Google Scholar
[2]
X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, R.H. Wagoner, Hardening evolution of AZ31B Mg sheet, Int. J. Plast. 23(2007) 44-86.
DOI: 10.1016/j.ijplas.2006.03.005
Google Scholar
[3]
M.O. Andar, T. Kuwabara, D. Steglich, Material modeling of AZ31 Mg sheet considering variation of r-values and asymmetry of the yield locus, Mater. Sci. Eng. A, 549(2012), 82–92.
DOI: 10.1016/j.msea.2012.04.009
Google Scholar
[4]
T. Hama, N. Kitamura, H. Takuda, Effect of twinning and detwinning on inelastic behavior during unloading in a magnesium alloy sheet, Mater. Sci. Eng. A, 583 (2013), 232-241.
DOI: 10.1016/j.msea.2013.06.070
Google Scholar
[5]
X. Huang, K. Suzuki, Y. Chino, M. Mabuchi, Influence of initial texture on cold deep drawability of Mg-3Al-1Zn alloy sheets, Mater. Sci. Eng. A., 565 (2013), 359-372.
DOI: 10.1016/j.msea.2012.12.070
Google Scholar
[6]
J. Koike, Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature, Metall. Mater. Trans. A, 36 (2005), 1689-1696.
DOI: 10.1007/s11661-005-0032-4
Google Scholar
[7]
T. Hama, H. Takuda, Crystal-Plasticity Finite-Element Analysis of Inelastic Behavior During Unloading in a Magnesium Alloy Sheet, Int. J. Plast., 27(2011) 1072-1092.
DOI: 10.1016/j.ijplas.2010.11.004
Google Scholar
[8]
L. Wu, S.R. Agnew, Y. Ren, D.W. Brown, B. Clausen, G.M. Stoica, H.R. Wenk, P.K. Liaw, The effects of texture and extension twinning on the low-cycle fatigue behavior of a rolled magnesium alloy, AZ31B, Mater. Sci. Eng. A, 527 (2010), 7057-7067.
DOI: 10.1016/j.msea.2010.07.047
Google Scholar
[9]
T. Hama, T. Mayama, H. Takuda, Deformation behavior of a magnesium alloy sheet with random crystallographic orientations, Key Eng. Mater., 611-612 (2014), 27-32.
DOI: 10.4028/www.scientific.net/kem.611-612.27
Google Scholar
[10]
S.H. Park, S-G. Hong, C.S. Lee, In-plane anisotropic deformation behavior of rolled Mg-3Al-1Zn alloy by initial {10-12} twins, Mater. Sic. Eng. A, 570 (2013), 149-163.
DOI: 10.1016/j.msea.2013.01.071
Google Scholar
[11]
T. Kuwabara, Y. Kumano, J. Ziegelheim, I. Kurosaki, Tension-compression asymmetry of phosphor bronze for electronic parts and its effect on bending behavior, Int. J. Plasticity, 25 (2009), 1759-1776.
DOI: 10.1016/j.ijplas.2009.01.004
Google Scholar
[12]
Y. Chino, K. Kimura, M. Mabuchi, Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy, Mater. Sci. Eng. A, 486 (2008), 481-488.
DOI: 10.1016/j.msea.2007.09.058
Google Scholar
[13]
T. Hama, H. Takuda, Work-hardening behavior upon reverse loading in a rolled AZ31 magnesium alloy sheet, Key, Eng. Mater., 622-623 (2014), 603-608.
DOI: 10.4028/www.scientific.net/kem.622-623.603
Google Scholar
[14]
D. Steglich, X. Tian, J. Bohlen, T. Kuwabara, Mechanical testing of thin sheet magnesium alloys in biaxial tension and uniaxial compression, Exp. Mech., 54 (2014), 1247-1258.
DOI: 10.1007/s11340-014-9892-0
Google Scholar