Identification of Plasticity Model Parameters of the Heat-Affected Zone in Resistance Spot Welded Martensitic Boron Steel

Article Preview

Abstract:

A material model is developed that predicts the plastic behaviour of fully hardened 22MnB5 base material and the heat-affected zone (HAZ) material found around its corresponding resistance spot welds (RSWs). Main focus will be on an accurate representation of strain fields up to high strains, which is required for subsequent calibration of the fracture behaviour of both base material and HAZ. The plastic behaviour of the base material is calibrated using standard tensile tests and notched tensile tests and an inverse FEM optimization algorithm. The plastic behaviour of the HAZ material is characterized using a specially designed tensile specimen with a HAZ in the gage section. The exact location of the HAZ relative to the centre of the RSW is determined using microhardness measurements, which are also used for mapping of the material properties into an FE-model of the specimen. With the parameters of the base material known, and by assuming a linear relation between the hardness and the plasticity model parameters of base material and HAZ, the unknown HAZ parameters are determined using inverse FEM optimization. A coupon specimen with HAZ is used to validate the model at hand.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

369-376

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Naderi, Hot stamping of ultra high strength steels. Ph.D. thesis, RWTH Aachen, Germany, (2007).

Google Scholar

[2] S. Vignier, E. Biro, M. Hervé, Predicting the hardness profile across resistance spot welds in martensitic steels, Weld World 58 (2014) 297-305.

DOI: 10.1007/s40194-014-0116-0

Google Scholar

[3] J.F. Zarzour, P.J. Konkol, H. Dong, Stress-Strain Characteristics of the Heat-Affected Zone in an HY-100 Weldment as Determined by Microindentation Testing, Materials Characterization 37 (1996) 195-209.

DOI: 10.1016/s1044-5803(96)00128-3

Google Scholar

[4] W. Tong, H. Tao, X. Jiang, N. Zhang, M.P. Marya, L.G. Hector, X.Q. Gayden, Deformation and Fracture of Miniature Tensile Bars with Resistance-Spot-Weld Microstructures, Metallurgical and Materials Transactions A 36 (2005) 2651-2669.

DOI: 10.1007/s11661-005-0263-4

Google Scholar

[5] S. Dancette, V. Massardier-Jourdan, D. Fabrègue, J. Merlin, T. Dupuy, M. Bouzekri, HAZ Microstructures and Local Mechanical Properties of High Strength Steels Resistance Spot Welds, ISIJ International 51 (2011) 99-107.

DOI: 10.2355/isijinternational.51.99

Google Scholar

[6] ArcelorMittal, Steels for hot stamping, Product catalogue, (2012).

Google Scholar

[7] L. Greve, Modulare Materialmodellierung für die Simulation von Deformations- und Bruchvorgängen, Presented at crashMAT 2012 - 6. Freiburg Workshop zum Werkstoff- und Strukturverhalten bei Crashvorgängen, (2012).

Google Scholar

[8] F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S. -H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets – part 1: theory, International Journal of Plasticity 19 (2003) 1297-1319.

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar

[9] H. Haddadi, S. Belhabib, Improving the characterization of a hardening law using digital image correlation over an enhanced heterogeneous tensile test, International Journal of Mechanical Sciences 62 (2012) 47-56.

DOI: 10.1016/j.ijmecsci.2012.05.012

Google Scholar

[10] T.K. Eller, L. Greve, M.T. Andres, M. Medricky, A. Hatscher, V.T. Meinders, A.H. van den Boogaard, Plasticity and fracture modeling of quench-hardenable boron steel with tailored properties, Journal of Materials Processing Technology 214 (2014).

DOI: 10.1016/j.jmatprotec.2013.12.015

Google Scholar