A Modified Shell Element Model Combined with Yld91 Yield Function in Simulating Aluminum Alloy Applied Hydroforming

Article Preview

Abstract:

Hydroforming has been used widely across many industrial fields. Large applied pressure during hydroforming makes it necessary to consider the influence of normal stress in the thickness direction, while in FE simulation, the use of traditional shell element based upon plane-stress assumption is not appropriate in such cases. Here, the traditional shell element is modified by changing the constitutive relation which took into account the normal stress in the thickness direction, and the modified shell element formula is combined with Yld91 yield function to simulate the forming process of Aluminium alloy. Then the element formulation and material model is implemented into the FE code Ls-Dyna by means of USER interface. Two examples are carried out and good correlations are obtained when compared to the traditional shell element and solid element.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

435-442

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.F. Zhang, J. Chen, J.S. Chen, J. Lu, G. Liu, S.J. Yuan, Overview on constitutive modeling for hydroforming with the existence of through-thickness normal stress, J Mater Process Techno., 212 (2012) 2228-2237.

DOI: 10.1016/j.jmatprotec.2012.06.018

Google Scholar

[2] R. Hauptmann, K. Schweizerhof, A systematic development of solid-shell, element formulations for linear and non-linear analyses employing only displacement degrees of freedom, Int J Numer Meth Engng., 42 (1998) 49-69.

DOI: 10.1002/(sici)1097-0207(19980515)42:1<49::aid-nme349>3.0.co;2-2

Google Scholar

[3] M. Robinson, An evaluation of the errors in the yield surface for a rotationally symmetric thin shell due to neglecting transverse normal stresses and shell curvature, Int J Mech Sci., 42(2000) 1087-1095.

DOI: 10.1016/s0020-7403(99)00037-5

Google Scholar

[4] J.C. Simo, M.S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, Int J Numer Meth Engng., 29 (1990) 1595-1638.

DOI: 10.1002/nme.1620290802

Google Scholar

[5] N.E. Abbasi, S.A. Meguid, A new shell element accounting for through-thickness deformation, Comput Methods Appl Mech Engng., 189 (2000) 841-862.

DOI: 10.1016/s0045-7825(99)00348-5

Google Scholar

[6] R. J, Alves de Sousa, R.P.R. Cardoso, R.A. Fontes Valente, J.W. Yoon, J.J. Gracio, R.M. Natal Jorge, A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: Part 1-geometrically linear applications, Int J Numer Meth Engng., 62(2005).

DOI: 10.1002/nme.1226

Google Scholar

[7] R. J, Alves de Sousa, R.P.R. Cardoso, R.A. Fontes Valente, J.W. Yoon, J.J. Gracio, R.M. Natal Jorge, A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: Part 2-nonlinear applications, Int J Numer Meth Engng., 67 (2006).

DOI: 10.1002/nme.1609

Google Scholar

[8] R.P.R. Cardoso, J.W. Yoon, M. Mahardika, S. Choudhry, R.J. Alves de Sousa, R.A. Fontes Valente, Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements, Int J Numer Meth Engng., 75 (2008).

DOI: 10.1002/nme.2250

Google Scholar

[9] H. Lu, K. Ito, K. Kazama, S. Namura, Development of a new quadratic shell element considering the normal stress in the thickness direction for simulating sheet metal forming, J Mater Process Techno., 171 (2006) 341-347.

DOI: 10.1016/j.jmatprotec.2005.06.081

Google Scholar

[10] D.N. Kim, K.J. Bathe, A 4-node 3D-shell element to model shell surface tractions and incompressible behaviour, Comput Struct., 86 (2008) 2027-(2041).

DOI: 10.1016/j.compstruc.2008.04.019

Google Scholar

[11] J.W. Cho, D.Y. Yang, W.J. Chung, A simplified approach for incorporating thickness stress in the analysis of sheet metal forming using shell elements, Int J Numer Meth Engng., 53 (2002) 2311-2327.

DOI: 10.1002/nme.379

Google Scholar

[12] J.C. Ng, S.G. Luckey, G.T. Kridli, P.A. Friedman, Validation of a modified material model for use with shell elements to improve the predictive accuracy of the thickness distribution in superplastic forming of sheet metals, J Mater Process Techno., 211 (2011).

DOI: 10.1016/j.jmatprotec.2011.03.012

Google Scholar

[13] D. Banabic, F. Barlat, O. Cazacu, T. Kuwabara, Advances in anisotropy and formability, Int J Mater Form., 3 (2010) 165-189.

DOI: 10.1007/s12289-010-0992-9

Google Scholar

[14] F. Barlat, D.J. Lege, J.C. Berm, A six-component yield function for anisotropic materials, Int J Plast., 7 (1991) 693-712.

DOI: 10.1016/0749-6419(91)90052-z

Google Scholar

[15] T. Belytschko, W.K. Liu, B. Moran, Nonlinear finite elements for continua and structures, first ed., John Wiley and Sons, England, 2001, pp.287-288.

Google Scholar

[16] J.W. Yoon, F. Barlat, R.E. Dick, K. Chung, T.J. Kang, Plane stress yield function for aluminum alloy sheets-Part II: FE formulation and its implementation, Int J Plast., 20 (2004) 495-522.

DOI: 10.1016/s0749-6419(03)00099-8

Google Scholar