Creep Behaviour of AA6016 during Automotive Paint Drying Processes

Article Preview

Abstract:

Modern car-bodies consist of different types of metals in order to gain the best crash performance at minimal weight. After the press and body shop, the bodies in white run through several paint drying processes, where also alloys of the 6xxx series become heat-treated. Consequently, the different thermal expansion behaviour of joined aluminium-steel components leads to high bending stress conditions within the car body structure while they heat up to 200 °C. In order to describe the process deformations numerical simulations were developed, where appropriate material models are necessary. Especially aluminium alloys with a melting point of about 600 °C can exhibit viscoplastic behaviour at 200 °C under stress. In this work, creep characteristics of the aluminium alloy AA6016 are investigated using a bending test. Based on these results an adequate model for finite element (FE-) simulations of creep strains is pointed out, which can be used for novel analyses of the whole car body in the automotive e-coat drying process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

443-450

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Braess, U. Seiffert (ed. ), Vieweg Handbuch Kraftfahrzeugtechnik, 6. Auflage, ATZ/MTZ-Fachbuch, Vieweg+Teubner Verlag, Wiesbaden, (2011).

DOI: 10.1007/978-3-8348-8298-1_12

Google Scholar

[2] M. Bloeck, Alusuisse Technology Center, Aluminium Car Body Sheet: Alloys and Surface Pretreatments as System Solution, ETHZ Materials Day 18. 05. 2001, Zürich (2001).

Google Scholar

[3] S. Kleiner, EMPA Thun und Institut für Metallforschung, ETH Zürich, Paint Bake Response von Karosserieblechen aus Aluminium, ETHZ Materials Day 18. 05. 2001, Zürich (2001).

Google Scholar

[4] C. Albiez, M. Liewald, A. Görres, J. Regensburger, Numerical Prediction of Thermal Panel Distortion incorporating Thermal Material Properties of 6016 Aluminium Alloy, European Aluminium Congress, Düsseldorf (2011).

Google Scholar

[5] S. Roller, Integrierte Lackierprozess-Simulation an virtuellen Fahrzeugprototypen in der Digitalen Fabrik, Dissertation, Technische Universität Clausthal, (2012).

Google Scholar

[6] M.F. Ashby, A First Report on Deformation Mechanism Maps, Acta Metallurgica, Vol. 20, No. 7 (1972), pp.887-897.

DOI: 10.1016/0001-6160(72)90082-x

Google Scholar

[7] Y.G. An, L- Zhuang, H. Vegter, A. Hurkmans, Fast Aging Kinetics of the AA6016 Al-Mg-Si Alloy and the Application in Forming Process, Metallurgical and Materials Transactions A, Vol. 33a (2002), pp.3121-3126.

DOI: 10.1007/s11661-002-0297-9

Google Scholar

[8] T.H. Courtney, Mechanical Behavior of Materials, McGraw Hill, Boston, (2000).

Google Scholar

[9] J.E. Dorn, Some Fundamental Experiments on High Temperature Creep, Journal of the Mechanics and Physics of Solids, Vol. 3 (1954), pp.85-116.

Google Scholar

[10] J. Betten, Creep Mechanics, 3. Auflage, Springer Verlag, Berlin und Heidelberg, (2008).

Google Scholar

[11] E.N. da C. Andrade, The Flow in Metals under Large Constant Stresses, Proceedings of the Royal Society A, Vol. 90, Nr. 619 (1914), pp.329-342.

Google Scholar

[12] F. Garofalo, Fundamentals of Creep and Creep Rupture in Metals, The MacMillan Company, New York, (1965).

Google Scholar

[13] B. Illscher, Hochtemperatur-Plastizität, Springer Verlag, Berlin und Heidelberg, (1973).

Google Scholar