Design of Numerical Simulations of Linear Friction Welding Processes: Issues and Difficulties

Article Preview

Abstract:

In this paper, a critical analysis of the technical difficulties and numerical issues in running simulations of linear friction welding processes is carried out. The focus of the paper is the comparison of different modeling strategies of a numerical analysis for the LFW process of Ti-6Al-4V titanium alloy, for which the thermal aspect strongly influences the mechanical behavior due to the phase transformation, taking place over a definite range of temperature. A 3D simulation campaign, conducted using the FEA code DEFORMTM, was considered in order to show advantages and disadvantages of each approach, including the most critic limitations and complexity in a correct simulation design using two deformable objects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

451-458

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.Y. Li, A. Vairis, R.M. Ward, Advances in Friction Welding, Advances in Materials Science and Engineering, (2014).

Google Scholar

[2] A. Vairis, M. Frost, High frequency linear friction welding of a titanium alloy, Wear, 217 (1998) 117-131.

DOI: 10.1016/s0043-1648(98)00145-8

Google Scholar

[3] A. Vairis, M. Frost, On the extrusion stage of linear friction welding of Ti6Al4V, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 271 (1999) 477-484.

DOI: 10.1016/s0921-5093(99)00449-9

Google Scholar

[4] W.Y. Li, T.J. Ma, J.L. Li, Numerical simulation of linear friction welding of titanium alloy: Effects of processing parameters, Materials & Design, 31 (2010) 1497-1507.

DOI: 10.1016/j.matdes.2009.08.023

Google Scholar

[5] A. Vairis, M. Frost, Modelling the linear friction welding of titanium blocks, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 292 (2000) 8-17.

DOI: 10.1016/s0921-5093(00)01036-4

Google Scholar

[6] M. Aonuma, K. Nakata, Dissimilar metal joining of ZK60 magnesium alloy and titanium by friction stir welding, Materials Science and Engineering: B, 177 (2012) 543-548.

DOI: 10.1016/j.mseb.2011.12.031

Google Scholar

[7] A. Vairis, Mathematical Modelling of the Linear Friction Welding Process, Journal of Engineering Science and Technology Review, 5 (2012) 25-31.

Google Scholar

[8] R. Turner, J.C. Gebelin, R.M. Ward, R.C. Reed, Linear friction welding of Ti-6Al-4V: Modelling and validation, Acta Materialia, 59 (2011) 3792-3803.

DOI: 10.1016/j.actamat.2011.02.028

Google Scholar

[9] W. -Y. Li, T. Ma, J. Li, Numerical simulation of linear friction welding of titanium alloy: Effects of processing parameters, Materials & Design, 31 (2010) 1497-1507.

DOI: 10.1016/j.matdes.2009.08.023

Google Scholar

[10] W. Li, S. Shi, F. Wang, T. Ma, J. Li, D. Gao, A. Vairis, Heat reflux in flash and its effect on joint temperature history during linear friction welding of steel, International Journal of Thermal Sciences, 67 (2013) 192-199.

DOI: 10.1016/j.ijthermalsci.2012.12.004

Google Scholar

[11] A.V.Y. a.I.S.N. A.M. Yamileva, Comparison of the Parallelization Efficiency of a Thermo-Structural Problem Simulated in SIMULIA Abaqus and ANSYS Mechanical, Journal of Engineering Science and Technology Review 53(2012) 5.

DOI: 10.25103/jestr.053.8

Google Scholar

[12] S. Kiselyeva, A. Yamileva, M. Karavaeva, I.S. Nasibullayev, V. Bychkov, А.Y. Medvedev, А. Supov, F. Musin, I. Alexandrov, V. Latysh, Computer modelling of linear friction welding based on the joint microstructure, Journal of Engineering Science and Technology Review, 5 (2012).

DOI: 10.22226/2410-3535-2012-1-40-44

Google Scholar

[13] A. Ducato, L. Fratini, F. Micari, Prediction of phase transformation of Ti-6Al-4V titanium alloy during hot-forging processes using a numerical model, P I Mech Eng L-J Mat, 228 (2014) 154-159.

DOI: 10.1177/1464420713477344

Google Scholar

[14] A. Ducato, L. Fratini, F. Micari, Advanced numerical models for the thermo-mechanical-metallurgical analysis in hot forging processes, Aip Conf Proc, 1532 (2013) 3-14.

DOI: 10.1063/1.4806804

Google Scholar

[15] A. Ducato, L. Fratini, F. Micari, Coupled thermo-mechanical-metallurgical analysis of an hot forging process of titanium alloy, Key Eng Mater, 554-557 (2013) 638-646.

DOI: 10.4028/www.scientific.net/kem.554-557.638

Google Scholar

[16] A. Astarita, A. Ducato, L. Fratini, V. Paradiso, F. Scherillo, A. Squillace, C. Testani, C. Velotti, Beta Forging of Ti-6Al-4V: microstructure evolution and mechanical properties, Key Eng Mater, 554-557 (2013) 359-371.

DOI: 10.4028/www.scientific.net/kem.554-557.359

Google Scholar

[17] P.K. Zhao, L. Fu, D.C. Zhong, Numerical simulation of transient temperature and axial deformation during linear friction welding between TC11 and TC17 titanium alloys, Comp Mater Sci, 92 (2014) 325-333.

DOI: 10.1016/j.commatsci.2014.05.062

Google Scholar

[18] F. Schröder, R. Ward, A. Walpole, R. Turner, M. Attallah, J. Gebelin, R. Reed, Linear friction welding of Ti6Al4V: experiments and modelling, Materials Science and Technology, (2014).

DOI: 10.1179/1743284714y.0000000575

Google Scholar