[1]
P.F. Stratton, in.: Proc. of the 1st Int. Conf. on Heat Treatment and Surf. Eng. of Tools and Dies, Pula, Croatia, 8. -11. 6. 2005, p.11 – 19.
Google Scholar
[2]
D.N. Collins, J. Dormer, Deep Cryogenic Treatment of a D2 Cold-Work Tool Steel, in: Heat Treatment of Metals 24 1997, p.71 – 74.
DOI: 10.1179/174951508x446376
Google Scholar
[3]
P. Jurči, J. Sobotová, J. Cejp, P. Salabová and O. Prikner, Effect of Sub-zero Treatment on Mechanical Properties of Vanadis 6 PM Ledeburitic Tool Steel, in: Metal 2010 18. – 20. 5. 2010, Rožnov pod Radhoštěm, Česká Republika.
DOI: 10.1016/j.vacuum.2014.10.004
Google Scholar
[4]
D. Candane, N. Alagumurthi and K. Palaniradja, Effect of Cryogenic Treatment on Microstructure and Wear Characteristics of AISI M35 HSS, in: International Journal of Materials Science and Applications. Vol. 2, 2013, pp.56-65.
DOI: 10.11648/j.ijmsa.20130202.14
Google Scholar
[5]
A. Akhbarizadeh, A. Shafyei and M.A. Golozar, Effects of cryogenic treatment on wear behavior of D6 tool steel, in: Materials and Design 30 , 2009, p.3259–3264.
DOI: 10.1016/j.matdes.2008.11.016
Google Scholar
[6]
T.V. Sreerama Reddy, T. Sornakumar, M. Venkatarama Reddy and R. Venkatram, Machining Performance of Low Temperature Treated P-30 Tungsten Carbide Cutting Tool Inserts, in: Cryogenics 48, 2008, p.458–461.
DOI: 10.1016/j.cryogenics.2008.06.001
Google Scholar
[7]
V. Leskovesk, M. Kalin and J. Vizintin, Influence of Deep-Cryogenic Treatment on Wear Resistance of Vacuum Heat-Treated HSS, in: Vacuum 80, 2006, p.507 – 518.
DOI: 10.1016/j.vacuum.2005.08.023
Google Scholar
[8]
K. Vadivel, R. Rudramoorthy, Performance Analysis of Cryogenically Treated Coated Carbide Inserts, in: International Journal of Advanced Manufacturing Technology, 42, 2009, p.222 – 232.
DOI: 10.1007/s00170-008-1597-z
Google Scholar
[9]
B.R. Ramji, H.N. Narasimha Murthy and M. Krishna, Analysis of Roughness and Flank Wear in Turning Grey Cast Iron Using Cryogenically Treated Cutting Tools, in: Research Journal of Applied Sciences , Engineering and Technology 2(5), 2010, pp.414-417.
Google Scholar
[10]
R.F. Barron, Low Temperature Properties of Engineering Materials, Cryogenic Systems, McGraw-Hill, New York, 1996, p.15–23.
Google Scholar
[11]
T.P. Sweeny, Deep Cryogenics: The Great Cold Debate, in: Heat Treat., 18(2), 1986, p.28–32. D.N. Collins, Deep Cryogenic Treatment of Tool Steels, A Review, in: Heat Treat. Met., 1996, 2, p.40–42.
Google Scholar
[12]
E.S. Zhmud, Improved Tool Life After Shock Cooling, in: Met. Sci. Heat Treat., 22 (10), 1980, p.3–5.
DOI: 10.1007/bf00700558
Google Scholar
[13]
R.F. Barron, Do Treatment at Temperature Below 120 F Help Increase the Wear Resistance of Tool Steels? Here Are Some Research Findings That Indicate They Do, in: Heat Treat., p.14–17.
Google Scholar
[14]
S.S. Gill, J. Singh, R. Singh and H. Singh, Effect of Cryogenic Treatment on AISIM2 High Speed Steel: Metallurgical and Mechanical Characterization, in: Journal of Materials Engineering and Performance 21 (7), (2012).
DOI: 10.1007/s11665-011-0032-z
Google Scholar
[15]
R. Dziurka, J. Pacyna and T. Tokarski, Effect of Heating Rate on Phase Transformations During Tempering of Cr-Mn-Mo Alloy Steels, in: Metal 2013: 22nd International Conference on Metallurgy and Materials 2013 pp.700-705.
Google Scholar
[16]
P. Bala, J. Pacyna and J. Krawczyk, The microstructure changes in high-speed steels during continuous heating from the as-quenched state, in: Kovove Materialy-Metallic Materials, 49, 2011, pp.125-130.
DOI: 10.4149/km_2011_2_125
Google Scholar