Atomic Scale Friction in the Function of Modified Eyring Activation Energies

Article Preview

Abstract:

At microscale, friction is better understood fundamentally through hydrodynamic and elastohydrodynamic lubrication. However, the mechanisms governing friction at nanoscale remains a subject of interest. With the emergence of small-scale devices such as Microelectromechanical Systems (MEMS) and Nanoelectromechanical Systems (NEMS), there is a need to improve on the fundamental understanding of friction at diminishing gaps. Therefore, the paper investigates the friction of a simple fluid (n-hexadecane 99%) using an atomic force microscope. The measurements are interpreted using modified Eyring’s thermal activation energy approach in order to examine the effect of molecular solvation at the assumed smooth summit of asperities. It is found out that solvation for a sliding contact could be observed through the shear stress activation volume due to generated thermal energy, which indicates the movement of the fluid molecules into and out of the contact.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. N. Israelachvili. Intermolecular and surface forces. Academic Press London, (1992).

Google Scholar

[2] R. G. Horn and J. N. Israelachvili. Direct measurement of structural forces between two surfaces in a nonpolar liquid. J. Chem. Phys., Vol. 75 (1981), p.1400–1412.

DOI: 10.1063/1.442146

Google Scholar

[3] D. Y. C. Chan and R. G. Horn. The drainage of thin liquid films between solid surfaces. J. Chem. Phys., Vol. 83 (1985), p.5311–5324.

DOI: 10.1063/1.449693

Google Scholar

[4] R. Y. H. Lim and S. J. O'Shea. Discrete solvation layering in confined binary liquids. Langmuir, Vol. 20 (2004), p.4916–4919.

DOI: 10.1021/la036200g

Google Scholar

[5] H. Matsuoka and T. Kato. An ultrathin liquid film lubrication theory - calculation method of solvation pressure and its application to the ehl problem. J. Trib., Vol. 119 (1997), p.217–226.

DOI: 10.1115/1.2832464

Google Scholar

[6] M. Al-Samieh and H. Rahnejat. Ultra-thin lubricating films under transient conditions. J. Phys D: App. Phys., Vol. 34 (2001), p.2610–2621.

DOI: 10.1088/0022-3727/34/17/307

Google Scholar

[7] M. F. Abd. Al-Samieh and H. Rahnejat. Nano-lubricant film formation due to combined elastohydrodynamics and surface force action under isothermal conditions. Proc. IMechE, Part C : J. Mech. Eng. Sci., Vol. 215 (2001), p.1019–1029.

DOI: 10.1177/095440620121500902

Google Scholar

[8] M. Al-Samieh and H. Rahnejat. Physics of lubricated impact of a sphere in a plate in a narrow continuum to gaps of molecular dimensions. J. Phys D: App. Phys, Vol. 35 (2002), p.2311– 2326.

DOI: 10.1088/0022-3727/35/18/313

Google Scholar

[9] W. W. F. Chong, M. Teodorescu, and H. Rahnejat. Effect of lubricant molecular rheology on formation and shear of ultra-thin surface films. J. Phys D : App. Phys, Vol. 44 (2011):, p.165302.

DOI: 10.1088/0022-3727/44/16/165302

Google Scholar

[10] W. W. F. Chong, M. Teodorescu, and H. Rahnejat. Formation of ultra-thin bi-molecular boundary adsorbed films. J. Phys., D: Appl. Phys., Vol. 45 (2012), p.115303.

DOI: 10.1088/0022-3727/45/11/115303

Google Scholar

[11] W. W. F. Chong, M. Teodorescu, and H. Rahnejat. Physio-chemical hydrodynamic mechanism underlying the formation of thin adsorbed boundary films. Faraday Discuss, Vol. 156 (2012), p.123–136.

DOI: 10.1039/c2fd00118g

Google Scholar

[12] D. J. Mitchell, B. W. Ninham, and B. A. Pailthorpe. Hard sphere structural effects in colloid systems. Chem. Phys Lett., Vol. 51 (1977), p.257–260.

DOI: 10.1016/0009-2614(77)80397-7

Google Scholar

[13] D. Henderson and M. Lozada-Cassou. A simple theory for the force between spheres immersed in a fluid. J. Coll. Inter. Sci., Vol. 114 (1986), p.180–183.

DOI: 10.1016/0021-9797(86)90250-x

Google Scholar

[14] P. Attard and J.L. Parker. Oscillatory solvation forces: A comparison of theory and experiment. J. Phy. Chem., Vol. 96 (1992), p.5086–5093.

DOI: 10.1021/j100191a063

Google Scholar

[15] C.K. Buenviaje, S.R. Ge, M.H. Rafaillovich, and R.M. Overney. Atomic force microscopy calibration methods for lateral force, elasticity and viscosity. Mat. Res. Soc. Symp. Proc., Vol. 522 (1998), p.187–192.

DOI: 10.1557/proc-522-187

Google Scholar

[16] G. Styles, R. Rahmani, H. Rahnejat, and B. Fitzsimons. In-cycle and life-time friction transience in piston ring-liner conjunction under mixed regime of lubrication. Int, J. Engine Res., doi: 10. 1177/1468087413519783.

DOI: 10.1177/1468087413519783

Google Scholar

[17] H. Eyring. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys., Vol. 4 (1936), p.283.

Google Scholar

[18] B. J. Briscoe and D. C. B. Evans. The shear properties of langmuir-blodgett layers. Proc. Roy. Soc. London. Ser. A, Math. and Phys. Sci., Vol. 380 (1982), p.389–407.

Google Scholar

[19] M. He, A. Szuchmacher Blum, G. Overney, and R. M. Overney. Effect of inter- facial liquid structuring on the coherence length in nanolubrication. Phys. Rev. Lett., Vol. 88 (2002), p.154302.

DOI: 10.1103/physrevlett.88.154302

Google Scholar